CDI LIC EDILCATION

GPLUS EDUCATION				
Dat Tin Mai		CHEMISTRY		
	CHEMICAL KINETICS			
	Single Correct Answer Type			
1.	The activation energies of two reactions are E_1 and $E_2(E_1 > E_2)$. If the temperation increased from T_1 to T_2 , the rate constant of the reactions changes from k_1 to k_2 and k_3 in the second reaction. Predict which of the following expression is correspond as $\frac{k_1'}{k_1'} = \frac{k_2'}{k_2'}$ b) $\frac{k_1'}{k_1'} > \frac{k_2'}{k_2'}$ c) $\frac{k_1'}{k_1'} < \frac{k_2'}{k_2'}$	t_1 in the first reaction and k		
2.	Effective collisions are those in which molecules must: a) Have energy equal to or greater than the threshold energy b) Have proper orientation c) Acquire the energy of activation d) All of the above			
3.	Consider the following statements, The rate law for the acid catalysed hydrolysis of an ester being given as Rate = k[H ⁺][ester] = k'[ester]. If the acid concentration is doubled at constant ester concentration 1. The second order rate constant, k is doubled. 2. The pseudo first order rate constant, k is double. 3. The rate of the reaction is doubled.			
4.	Which of the above statements are correct? a) 1 and 2 b) 2 and 3 c) 1 and 3 Half-life of two samples is 0.1 and 0.8 s. Their respective concentration is 400 at the order of reaction is	d) 1,2 and 3 and 50 respectively.		
	a) 0 b) 2 c) 1	d) 4		
5.	The units of rate of reaction are a) $L \text{ mol}^{-1} \text{ s}^{-1}$ b) mol $L^{-1} \text{ s}^{-1}$ c) mol $L^{-1} \text{ s}^{-1}$	d) None of these		
6.	Units of rate constant of first and zero order reactions in terms of molarity M u a) s^{-1} , M s^{-1} b) s^{-1} , M c) M s^{-1} , s^{-1}			
7. 8.	The half time of a second order reaction is: a) Inversely proportional to the square of the initial concentration of the reactably Inversely proportional to the initial concentration of the reactants c) Proportional to the initial concentration of reactants d) Independent of the initial concentration of reactants	ants		
0,	$\frac{1}{[A]^2}$ vs times are a straight line. Order of reaction is	1) m1 · 1		
9.	a) First b) Second c) Zero For an endothermic reaction where, ΔH represents the enthalpy of the reaction value for the energy of activation will be			
	a) Less than ΔH b) Zero c) More than ΔH	d) Equal to ΔH		
10.	The unit of rate constant for a zero order reaction a) $L s^{-1}$ b) $L mol^{-1} s^{-1}$ c) $mol L^{-1} s^{-1}$	d) $mol s^{-1}$		
11.	What is the formula to find value of $t_{1/2}$ for a zero order reaction?	u) 11101 S		

a)
$$\frac{k}{[R]_0}$$

b)
$$\frac{2k}{[R]_0}$$

c)
$$\frac{[R]_0}{2k}$$

d)
$$\frac{0.693}{k}$$

12. For the reaction, $A + B \rightarrow C + D$. The variation of the concentration of the products is given by the curve:

a) X

b) Y

c) Z

d)W

- 13. Acid hydrolysis of sucrose is a
 - a) Pseudo first order reaction

b) Zero order reaction

c) Second order reaction

- d) Unimolecular reaction
- 14. For a first order reaction the graph log[A] vs t is given below

x is equal to

a)
$$\frac{0.693}{k}$$

b)
$$\frac{k}{2.303}$$

c)
$$-\frac{k}{2.303}$$

- d) $\log [A]_0$
- 15. The rate constant of a first order reaction is $4 \times 10^{-3} \text{sec}^{-1}$. At a reactant concentration of 0.02 M, the rate of reaction would be:

a)
$$8 \times 10^{-5} M \text{ sec}^{-1}$$

b)
$$4 \times 10^{-3} M \text{ sec}^{-1}$$

c)
$$2 \times 10^{-1} M \text{ sec}^{-1}$$
 d) $4 \times 10^{-1} M \text{ sec}^{-1}$

d)
$$4 \times 10^{-1} M \text{ sec}^{-1}$$

16. The rate constant for the reaction, $2N_2O_5 \rightarrow 4NO_2 + O_2$ is $3.0 \times 10^{-5} s^{-1}$. If the rate is

 $2.4 \times 10^{-5} mol L^{-1} s^{-1}$ then the concentration of $N_2 O_5 (in \ mol \ L^{-1})$ is

a) 0.04

c) 0.07

d) 1.4

- 17. Activation energy of a reaction is:
 - a) The energy released during the reaction
 - b) The energy evolved when activated complex is formed
 - c) Minimum amount of energy needed to overcome the potential barrier of reaction
 - d) The energy needed to form one mole of the product
- 18. The activation energy for a reaction is 9.0 Kcal/mol. The increase in the rate constant when its temperature is increased from 298 K to 308 K is:
 - a) 10%

- b) 100%
- c) 50%

- 19. The rate of first order reaction, $A \rightarrow \text{Products}$, is $7.5 \times 10^{-4} \text{mol litre}^{-1} \text{sec}^{-1}$. If the concentration of A is $0.5 \text{ mol litre}^{-1}$ the rate constant is:
 - a) $3.75 \times 10^{-4} \text{sec}^{-1}$
- b) $2.5 \times 10^{-5} \text{sec}^{-1}$
 - c) $1.5 \times 10^{-3} \text{sec}^{-1}$
- d) $8.0 \times 10^{-4} \text{sec}^{-1}$

20. $2N_2O_5 \rightleftharpoons 4NO_2 + O_2$

For the above reaction which of the following is not correct above rates of reaction?

a)
$$\frac{-d[N_2O_5]}{dt} = 2\frac{d[O_2]}{dt}$$

b)
$$\frac{-2d[N_2O_5]}{dt} = \frac{d[NO_2]}{dt}$$

c)
$$\frac{d[NO_5]}{dt} = 4\frac{d[O_2]}{dt}$$

b)
$$\frac{-2d[N_2O_5]}{dt} = \frac{d[NO_2]}{dt}$$

d) $\frac{-2d[N_2O_5]}{dt} = 4\frac{d[NO_2]}{dt} = \frac{d[O_2]}{dt}$

21. A substance undergoes first order decomposition. The decomposition follows to parallel first order reactions as:

The percentage distribution of *B* and *C* are:

- a) 80% B and 20% C
- b) 76.83% B and 23.17% C
- c) 90% B and 10% C
- d) 60% B and 40% C
- 22. In Arrhenius plot intercept is equal to
 - a) $-E_a/R$
- b) ln *A*

c) ln *k*

- d) $\log_{10} a$
- 23. Half-life period of a first order reaction is 1386 seconds. The specific rate constant of the reaction is:
 - a) $5.0 \times 10^{-2} \text{s}^{-1}$ b) $5.0 \times 10^{-3} \text{s}^{-1}$
- c) $0.5 \times 10^{-2} \text{s}^{-1}$
- d) $0.5 \times 10^{-3} \text{s}^{-1}$

- 24. On addition of AgNO₃ to NaCl, white ppt. occurs:
 - a) Instantaneously
 - b) With a measurable speed
 - c) Slowly
 - d) None of these
- 25. Which is correct about zero order reaction?
 - a) Rate of reaction depends on decay constant.
 - b) Rate of reaction is independent of concentration.
 - c) Unit of rate constant is $conc^{-1}$
 - d) Unit of rate constant is $conc^{-1}$ $time^{-1}$
- 26. The half-life period of a first order reaction is 1 min 40 s. Calculate its rate constant.
 - a) $6.93 \times 10^{-3} min^{-1}$ b) $6.93 \times 10^{-3} s^{-1}$ c) $6.93 \times 10^{-3} s$
- d) $6.93 \times 10^3 s$
- 27. The reaction $2A + B + C \rightarrow D + E$ is found to be first order in A, second in B and zero order in C. What is the effect on the rate of increasing concentration of A, B and C two times?
 - a) 72 times
- b) 8 times c) 24 times
- d) 36 times

- 28. In a reaction, the threshold energy is equal to:
 - a) Activation energy + normal energy of reactants
 - b) Activation energy normal energy of reactants
 - c) Activation energy
 - d) Normal energy of reactants
- 29. Which one is not correct?
 - a) Rate of zero order reaction depends upon initial concentration of reactant
 - b) Rate of zero order reaction does not depend upon initial concentration of reactant
 - c) $t_{1/2}$ of first order reaction is independent of initial concentration of reaction
 - d) $t_{1/2}$ of zero order reaction is dependent of initial concentration of reaction
- 30. A reaction proceeds by first order, 75% of this reaction was completed in 32 min. the time required for 50% completion is
 - a) 8 min
- b) 16 min
- c) 20 min
- d) 24 min

31. The rate of the reaction

 $CCl_3CHO + NO \rightarrow CHCl_3 + NO + CO$ is equal to rate $k[CCl_3CHO][NO]$. If concentration is expressed in mol/L. The unit of k is

- a) $L \text{ mol}^{-1} \text{ s}^{-1}$
- b) mol $L^{-1} s^{-1}$ c) $L^2 \text{ mol}^{-2} s^{-1}$

32. Observe the following reaction,

$$2A + B \rightarrow C$$

The rate of formation of C is $2.2 \times 10^{-3} mol L^{-1} min^{-1}$.

What is the value of $-\frac{d[A]}{dt} (mol L^{-1} min^{-1})$?

_					
Gpl	IJς	Fd	uc	atı	on

	a) 2.2×10^{-3} b) 1.1×10^{-3}	c) 4.4×10^{-3}	d) 5.5×10^{-3}
33.	The unit of rate constant of a third order chemical re		
	a) $\text{mol}^{-1} \text{ L s}^{-1}$	b) $\text{mol}^{-1} \text{ s}^{-2}$	
	c) mol L	d) $s^{-1} \text{ mol}^{-2} L^2$	
34.	$CH_3COOC_2H_5 + H_2O \xrightarrow{H+} CH_3COOH + C_2H_5OH \text{ is}$		
	a) Zero b) Second	c) Third	d) Pseudo first order
35.	Collision theory is applicable to		
	a) First order reactions	b) Zero order reactions	
	c) Bimolecular reactions	d) Intra-molecular reaction	ons
36.	The efficiency of an enzyme in catalyzing a reaction		C 11 1
	a) To form a strong enzyme substrate complex	b) To decrease the bond of molecules	energy of all substrate
	c) To change the shape of the substrate molecule	d) To lower the activation	n energy of the reaction
37.	The reaction		
	$2A + B \longrightarrow 3C + D$		
	Which of the following does not express the reaction	ı rate?	
	a) $\frac{d[D]}{dt}$ b) $-\frac{d[A]}{2dt}$	c) $-\frac{d[C]}{3dt}$	d) $-\frac{d[B]}{dt}$
	240	Jui	ui
38.	If E_f and E_r are the activation energies of the forward	d and reverse reactions an	d the reaction is known to
	be exothermic then		
	a) $E_f < E_r$		
	b) $E_f > E_r$		
	c) $E_f = E_r$		
	d) No relation can be given between E_f and E_r as da	ta are not sufficient	
39.	Milk turns sour at 40°C three times as faster as at 0°	C. The energy of activation	for souring of milk is:
	a) 4.693 kcal b) 2.6 kcal	c) 6.6 kcal	d) None of these
40.	Which plots will give the value of activation energy?	LACITAL	
	Which plots will give the value of activation energy? a) $K vs.T$ b) $1/K vs.T$	c) ln <i>K vs.T</i>	d) $\ln K \ vs. \frac{1}{T}$
41.	In a second order reaction when the concentration of	of both reactant are equal, t	he reaction is completed in
	500 s. How long will it take for the reaction to go to	60% completion?	
	a) 1000 s b) 300 s	c) 3000 s	d) 2000 s
42.	The rate constant (K) for the reaction $2A + B \rightarrow$	Product was found to be	2.5×10^{-5} litre mol ⁻¹ sec ⁻¹
	after $15 \sec, 2.60 \times 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ after } 30 = 10^{-5} \text{ litre mol}^{-1} \sec^{-1} \text{ litre mol}^{-1} = 10^{-5} $	sec and 2.55×10^{-5} litre m	100^{-1}sec^{-1} after 50 sec. The
	order of reaction is:		
	a) 2 b) 3	c) Zero	d) 1
43.	The differential rate expression for the reaction H_2	$+ I_2 \rightarrow 2HI$ is:	
	a) $\frac{-d[H_2]}{dt} = \frac{-d[I_2]}{dt} = \frac{-d[HI]}{dt}$		
	at at at		
	b) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{d[HI]}{dt}$		

	c) $\frac{1}{2} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[I_2]}{dt} = \frac{d[HI]}{dt}$		
	d) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} = \frac{d[HI]}{dt}$		
44.	For the elementary step, $(CH) = CPr(xx) + CH = Cr(xx) + Pr^{-1}(xx) + $	a al a avila vit : -	
	$(CH_3)_3 \cdot CBr(aq) \rightarrow (CH_3)_3C^+(aq) + Br^-(aq)$ the r		d) Compotential
4 -	a) Zero b) 1	c) 2	d) Cannot ascertained
45.	A graph plotted between $\log t_{50\%} vs. \log a$ concentr	auon is a straignt line. Wh	at conclusion can you araw

from the given graph?

a)
$$n = 1$$
, $t_{1/2} = \frac{1}{K \cdot a}$

b)
$$n = 2$$
, $t_{1/2} = 1/a$

a)
$$n = 1$$
, $t_{1/2} = \frac{1}{K \cdot a}$ b) $n = 2$, $t_{1/2} = 1/a$ c) $n = 1$, $t_{1/2} = \frac{0.693}{K}$ d) None of the above

46. If a is the initial concentration then time required to decompose half of the substance for nth order is inversely proportional to:

a) a^n

b)
$$a^{n-1}$$

c)
$$a^{1-n}$$

47. The hydrolysis of ethyl acetate,

 $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$ is:

a) First order

b) Second order

c) Third order

d) Zero order

48. The rate law for a reaction between the substances A and B is given by

rate $= k[A]^n[B]^m$. On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as

a)
$$\frac{1}{2^{m+n}}$$

b) (m+n)

c) (n-m)

d) $2^{(n-m)}$

49. For the reaction

 $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$

The experimental data suggest

rate = $k[H_2][Br_2]^{1/2}$

the molecularity and order of the reaction are respectively

a)
$$1, \frac{1}{2}$$

50. The rate of reaction increases with temperature due to

a) Decrease in activation energy

b) Increase in activation energy

c) Increase in collision frequency

d) Increase in concentration

51. In a first order reaction, the concentration of the reactant is decreased from 1.0 *M* to 0.25 *M* in 20 minute. The rate constant of the reaction would be:

a) 10 min^{-1}

b) $6.931 \, \text{min}^{-1}$

c) $0.6931 \, \text{min}^{-1}$

d) $0.06931 \, \text{min}^{-1}$

52. The reaction obey I order with respect to H₂ and ICl both

 $H_2(g) + 2ICl(g) \rightarrow 2HCl(g) + I_2(g)$

Which of the following mechanism is in consistent with the given fact?

Mechanism A: $H_2(g) + 2ICl \rightarrow 2HCl(g) + I_2(g)$

 $Mechanism B: (i) H₂(g) + ICl(g) \xrightarrow{slow} HCl(g) + HI(g)$

(ii)
$$HI(g) + ICl(g) \rightarrow HCl(g) + I_2$$

a) A and B both

b) Neither *A* nor *B*

c) A only

- 53. Two reactions $A \to \text{products}$ and $B \to \text{products}$ have rate constants K_A and K_B at temperature T and activation energies E_A and E_B respectively. If $K_A > K_B$ and $E_A < E_B$ and assuming that A for both the reactions is same, then:
 - a) At higher temperatures K_A will be greater than K_B
 - b) At lower temperature K_A and K_B will differ more and $K_A > K_B$
 - c) As temperature rises K_A and K_B will be close to each other in magnitude
 - d) All of the above
- 54. The half life for a reaction ... of temperature.
 - a) Independent
 - b) Increased with increase
 - c) Decreased with increase
 - d) Dependent
- 55. The following mechanism has been proposed for the reaction of NO with Br_2 to form NOBr

			Opias Lautation
	$NO(g) + Br_2(g) \rightleftharpoons NOBr_2(g)$		
	$NOBr_2(g) + NO(g) \rightarrow 2NOBr(g)$		
	If the second step is the rate determining step, the		
	a) 1 b) 0	c) 3	d) 2
56.	The unit and value of rate constant and that of ra		
	a) Zero order b) First order	c) Second order	d) Third order
57.	According to collision theory of reaction rates:		
	a) Every collision between reactants leads to che		
	b) Rate of reaction is proportional to velocity of		
	c) All reactions which occur in gaseous phase are		
	d) Rate of reaction is directly proportional to col	- · ·	
58.	Half-life of a reaction is found to be inversely pro	oportional to the cube of initia	al concentration. The order
	of reaction is		
	a) 4 b) 3	c) 5	d) 2
59.	A reaction involving two different reactants can		
	a) Bimolecular reaction	b) Second order reaction	
	c) First order reaction	d) Unimolecular reactio	
60.	For the non-equilibrium process, $A + B \rightarrow \text{Prod}$		
	order respect to <i>B</i> . If 1.0 mole each of <i>A</i> and <i>B</i> a		
	1.0×10^{-2} mol/litre-sec. The rate (in mol litre ⁻¹	$^{1}\mathrm{sec^{-1}}$) when half of the read	ctants have been used:
	a) 1.2×10^{-3} b) 1.2×10^{-2}	c) 2.5×10^{-4}	d) None of these
61.	The activation energy of a reaction is zero. The r	rate constant for the reaction	
	a) Decreases with decrease of temp	b) Increases with increa	ase of temp
	c) Decreases with increase of temp	d) Is nearly independen	t of temp
62.	The burning of coal represented by the equat	ion; $C(s) + O_2(g) \rightarrow CO_2(g)$.	. The rate of this reaction is
	increased by:		
	a) Decrease in the concentration of oxygen		
	b) Powdering the lumps of coal	ICATION	
	c) Decreasing the temperature	CHILOIT	
	d) Providing inert atmosphere for burning		
63.	At room temperature, the reaction between NO	and $\rm O_2$ to give $ m NO_2$ is fast, wh	ile that between CO and ${ m O_2}$ is
	slow. It is due to:		
	a) CO is smaller in size than that of NO		
	b) CO is poisonous		
	The activation energy for the reaction,		
	c) $2NO + O_2 \rightarrow 2NO_2$ is less than		
	$2CO + O_2 \longrightarrow 2CO_2$		
	d) None of the above		
64.	The rate of first order reaction is $1.5 \times 10^{-2} mol$	L^{-1} min ⁻¹ at 0.5 M concentra	ation of the reactant. The
	half-life of reaction is		
	a) 0.383 min b) 23.1 min	c) 8.73 min	d) 7.53 min
65.	The rate constant of a first order reaction at 27°C	C is 10^{-3} min $^{-1}$. The tempera	ture coefficient of this
	reaction is 2. What is the rate constant (in min^{-1}	at 17°C for this reaction?	
	a) 10^{-3} b) 5×10^{-4}	c) 2×10^{-3}	d) 10^{-2}
66.	The minimum energy required for the reacting n	•	,
	a) Potential energy	b) Kinetic energy	
	c) Thermal energy	d) Activation energy	
67.	The decomposition of N_2O_5 occur as $2N_2O_5 \rightarrow 4N_5$		er kinetics, hance
	a) The reaction is unimolecular	b) The reaction is bimol	
	c) $t_{1/2} \propto a^0$	d) None of the above	
	, <u> </u>		

- 68. The rate of a chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the reaction increases by about
 - a) 10 times
- b) 24 times
- c) 32 times
- d) 64 times
- 69. Which of the following statement is incorrect about the molecularity of a reaction?
 - a) Molecularity of a reaction is the number of molecules of the reactants presents in the balanced equation
 - b) Molecularity of a reaction is the number of molecules in the slowest step
 - c) Molecularity is always a whole number
 - d) There is no difference between order and molecularity of a reaction
- 70. For a reaction $A + B \rightarrow$ Products, the rate of the reaction was doubled when the concentration of A was doubled. When the concentration of A and B were doubled, the rate was again doubled, the order of the reaction with respect to *A* and *B* are:
 - a) 1, 1

b) 2, 0

c) 1,0

- d) 0, 1
- 71. An exothermic chemical reaction occurs in two steps as follows
 - (I) $A + B \rightarrow X$ (fast)
 - (II) $X \rightarrow AB$ (slow)

The progress of the reaction can be best represented by

- d) All are correct
- 72. According to the Arrhenius equation a straight line is to be obtained by plotting the logarithm of the rate constant of a chemical reaction ($\log k$) against
 - a) T

b) $\log T$

- 73. The rate constant is numerically the same for three reactions of first, second and third order respectively. Which one is true for rate of three reaction?
- b) $r_1 > r_2 > r_3$
- d) All of these
- 74. Mathematical expression for $t_{1/4}$ i.e., when (1/4)th reaction is over following first order kinetics can be
- a) $t_{1/2} = \frac{2.303}{k} \log 4$ b) $t_{1/2} = \frac{2.303}{k} \log 2$ c) $t_{1/2} = \frac{2.303}{k} \log \frac{4}{3}$ d) $t_{1/2} = \frac{2.303}{k} \log \frac{3}{4}$

75. The rate of reaction:

 $2NO + Cl_2 \rightarrow 2NOCl$ is given by the rate, equation rate = $k[NO]^2[Cl_2]$. The value of the rate constant can be increased by:

- a) Increasing the temperature
- b) Increasing the concentration of NO
- c) Increasing the concentration of the Cl₂
- d) Doing all of these
- 76. A reaction was observed for 15 days and the percentage of the reactant remaining after the days indicated was recorded in the following table.

was recorded in the following ta				
Time (days)	% Reactant remaining			
0	100			
2	50			
4	39			
6	25			
8	21			
10	18			
12	15			

14	12.5
15	10

Which one of following best describes the order and the half-life of the reaction?

Reaction order Half-life (days)

- a) First

- b) First

- c) Second
- 2.

- d) Zero

77. In the reaction

$$BrO_3^-(aq) + 5Br^-(aq) + 6H^+ \rightarrow 3Br_2(l) + 3H_2O(l)$$

The rate of appearance of bromine (Br₂) is related to rate of disappearance of bromide ions as following:

a)
$$\frac{d(Br_2)}{dt} = \frac{3}{5} \frac{d(Br^2)}{dt}$$

a)
$$\frac{d(Br_2)}{dt} = \frac{3}{5} \frac{d(Br^-)}{dt}$$
 b) $\frac{d(Br_2)}{dt} = -\frac{3}{5} \frac{d(Br^-)}{dt}$ c) $\frac{d(Br_2)}{dt} = -\frac{5}{3} \frac{d(Br^-)}{dt}$ d) $\frac{d(Br_2)}{dt} = \frac{5}{3} \frac{d(Br^-)}{dt}$

c)
$$\frac{d(Br_2)}{dt} = -\frac{5}{3}\frac{d(Br_2)}{dt}$$

$$\frac{d(Br_2)}{dt} = \frac{5}{3} \frac{d(Br^{-1})}{dt}$$

- 78. Which one of the following is a second order reaction?
 - a) $H_2 + Br_2 \rightarrow 2HBr$

b) $NH_4NO_3 \rightarrow N_2 + 3H_2O$

c) $H_2 + Cl_2 \xrightarrow{\text{Sunlight}} 2HCl$

- d) $CH_3COOCH_3 + NaOH \rightarrow CH_3COONa + H_2O$
- 79. The temperature coefficient of most of the reactions lies between
- b) 2 and 3
- c) 1 and 4
- 80. In respect of the equation $k = Ae^{-E_a/RT}$ in chemical kinetics, which one of the statement is correct?
 - a) R is Rydberg constant

b) K is equilibrium constant

c) E_a is energy of activation

- d) A is adsorption factor
- 81. The rate of chemical reaction (except zero order):
 - a) Decreases from moment to moment
 - b) Remains constant throughout
 - c) Is independent of the order of reaction
 - d) None of the above
- 82. For a zero order reaction
 - a) $t_{1/2} \propto R_0$
- b) $t_{1/2} \propto 1/R_0$
- c) $t_{1/2} \propto R_0^2$

- 83. Effect of temperature on reaction rate is given by
 - a) Claisen-Clapeyron equation

b) Arrhenius equation

c) Gibbs Helmholtz equation

- d) Kirchoff's equation
- 84. The Arrhenius equation expressing the effect of temperature on the rate constant of reaction is:

a)
$$K = \frac{E_a}{RT}$$

b)
$$K = Ae^{-E_a/RT}$$

c)
$$K = \log_e \frac{E_a}{RT}$$

d)
$$K = e^{-E\alpha/RT}$$

- 85. Find the two third life $(t_{1/2})$ of a first order reaction in which $k = 5.48 \times 10^{-14}$ per second
 - a) $201 \times 10^{13} s$
- b) 2.01×10^{13} s
- c) 201×10^{20} s
- d) $0.201 \times 10^{10} s$

86. $A + B \rightarrow Product$

If concentration of A is doubled, rate increases 4 times. If concentration of A and B are doubled, rate increases 8 times. The differential rate equation of the reaction will be

a)
$$\frac{dC}{dt} = kC_A \times C_B$$

b)
$$\frac{dC}{dt} = kC_A^2 \times C_B^3$$

a)
$$\frac{dC}{dt} = kC_A \times C_B$$
 b) $\frac{dC}{dt} = kC_A^2 \times C_B^3$ c) $\frac{dC}{dt} = kC_A^2 \times C_B$ d) $\frac{dC}{dt} = kC_A^2 \times C_B^2$

d)
$$\frac{dC}{dt} = kC_A^2 \times C_B^2$$

- 87. For the reaction $A \to B$, the rate expression is $r = k[A]^n$. When the concentration of A is doubled, the rate of reaction is quadrupled. The value of n is
 - a) 1

b) Zero

c) 3

- d) 2
- 88. The rate constant for the first order reaction is $60 \, s^{-1}$. How much time will it take to reduce the concentration of the reaction to 1/16 M value?
 - a) $4.6 \times 10^{-2} s$
- b) $4.6 \times 10^4 s$
- c) $4.6 \times 10^2 s$
- d) $4.6 \times 10^{-4} s$

89. In the reaction,

 $2N_2O_5 \rightarrow 4NO_2 + O_2$ initial pressure is 500 atm and rate constant k is

- $3.38 \times 10^{-5} s^{-1}$ after 10 min the final pressure of $N_2 O_5$ is
- a) 490 atm
- b) 250 atm
- c) 480 atm
- d) 420 atm

90. For a chemical reaction, can never to a fraction

Gplus Education

				Gplus Education		
	a) Order	b) Half life	c) Rate constant	d) Molecularity		
91.	The time taken for the co	mpletion of 3/4 of a first o		(0.000 (0.75) 1)		
	a) $(2.303/k) \log 3/4$	b) $(2.303/k) \log 4$	c) $(2.303/k) \log 1/4$	d) $(2.303/0.75) \log k$		
92.	$2N_2O_5(g) \to 4NO_2(g) +$	$O_2(g)$				
	What is the ratio of the ra	ate of decomposition of N_2	${\it O}_{5}$ to rate of formation of ${\it O}$	2?		
	a) 1:2	b) 2:1	c) 1:4	d) 4:1		
93.		-	. when was 50% of the reac	-		
	a) 16 min	b) 8 min	c) 4 min	d) 32 min		
94.	For a reaction, $A + 2B \rightarrow$	C, rate is given by $+\frac{d[C]}{dt}$ =	= k[A][B],hence, the order of	of the reaction is		
	a) 3	b) 2	c) 1	d) 0		
95.			centration of species X and	<i>Y</i> for the reaction $X \rightarrow Y$,		
	as a function of time. The	point of intersection of the	e two curves represents:			
	0.4					
	↑ jii - 0.2-					
	g - 0.2-					
	Y					
	Time -					
	a) t _{1/2}					
	b) t _{3/4}					
	c) t _{2/3}					
	d) Data is insufficient to p					
96.			K is 10 times less than the i	rate constant at 400 K. What		
	is the activation energy () 460 6 D	D 220 2 D		
0.7	a) 1842.4 <i>R</i> A zero order reaction is o	b) 921.2 <i>R</i>	c) 460.6 R	d) 230.3 <i>R</i>		
97.						
	a) In which reactants dob) In which one of the rea					
	c) Whose rate does not c	•				
	d) Whose rate increases	-				
98.	•		be 8 after 10 minute. The r	ate constant is:		
	a) $(2.303 \times 3 \log 2)/10$	b) $(2.303 \times 2 \log 3)/10$	c) $10 \times 2.303 \times 2 \log 3$	d) $10 \times 2.303 \times 3 \log 2$		
99.	, ,	, ,	the concentration of A by 4	-		
	reaction is	J	V			
	a) 2	b) 1	c) $\frac{1}{2}$	d) 4		
	_,		$\frac{c_j}{2}$			
100	. The rate of chemical read		h) Degrees the reaction			

a) Increase as the reaction proceeds

b) Decrease the reaction proceeds

c) May increase or decrease during reaction

d) Remains constant as the reaction proceeds

101. For zero order reaction, the integrated rate equation is

a) $kt = \frac{[A]}{[A]_0}$

b) $kt = [A] - [A]_0$

c) $[A] = -kt + [A]_0$

d) $[A] = kt - [A]_0$

102. The half-life period of a first order reaction is 69.3 s. what is the rate constant?

a) $0.01s^{-1}$

b) $0.1s^{-1}$

c) $1s^{-1}$

d) $10s^{-1}$

103. A reaction has a rate constant of 0.5 mol⁻¹ dm³ min⁻¹. If initial concentration of the reactant is 0.2 mol dm^{-3} , half-life of the reaction

a) 1.4 min

b) 10 min

c) 15 min

d) 20 min

104. The bromination of acetone that occurs in acid solution is represented by this equation.

$$CH_3COCH_3(aq) + Br_2(aq) \rightarrow CH_3COCH_2Br(aq) + H^+(aq) + Br^-(aq)$$

These kinetic data were obtained for given reaction concentrations.

Initial concentrations, M

[CH ₃ COCH ₃]	$[Br_2]$	[H ⁺]	Initial rate,
			disappearan ce
			of Br ₂ , $M \mathrm{s}^{-1}$
0.30	0.05	0.05	5.7×10^{-5}
0.30	0.10	0.05	5.7×10^{-5}
0.30	0.10	0.10	1.2×10^{-4}
0.40	0.05	0.20	3.1×10^{-4}

Based on these data, the rate equation is:

- a) rate = $k[CH_3COCH_3][Br_2]$
- b) rate = $k[CH_3COCH_3][Br_2][H^+]^2$
- c) rate = $k[CH_3COCH_3][Br_2][H^+]$
- d) rate = $k[CH_3COCH_3][H^+]$
- 105. The rate constant for a chemical reaction has units $L \, mol^{-1}s^{-1}$, order of the reaction will be
 - a) 0

b) 1

c) 2

- d) 3
- 106. Activation energy of a chemical reaction can be determined by
 - a) Evaluating rate constant at standard temperatures
 - b) Evaluating velocities of reaction at two different temperatures
 - c) Evaluating rate constants at two different temperatures
 - d) Changing concentration of reactants
- 107. Which statement about molecularity of a reaction is wrong?
 - a) It is the number of molecules of the reactants taking part in a single step of reaction
 - b) It is calculated from the reaction mechanism
 - c) It may be either whole number or fractional
 - d) None of the above
- 108. Arrhenius equation may not be represented as

a)
$$\ln \frac{A}{k} = \frac{E_a}{RT}$$

b)
$$\frac{d \ln k}{dT} = \frac{E}{RT^2}$$

c)
$$\log A = \log k + \frac{E_a}{2.303 RT}$$

d)
$$\log \left[-\frac{E_a}{RT} \right] = \frac{k}{A}$$

- 109. The reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ is carried out in a $1dm^3$ vessel and $2dm^3$ vessel separately. The ratio of the reaction velocities will be
 - a) 1:8

b) 1:4

c) 4:1

- 110. The rate for the reaction, $RCl + NaOH(aq) \rightarrow ROH + NaCl$ is given by rate = k[RCl], the freezing point of the reaction is
 - a) Unaffected by increasing the temperature of the reaction
 - b) Decreased on increasing the temperature of the reaction
 - c) Halved on reducing the concentration of RCl to half
 - d) Doubled on doubling the concentration of NaOh
- 111. In the sequence of reaction,

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C \xrightarrow{k_3} D \ k_3 > k_2 > k_1 \text{ then the rate determining step of reaction is}$$

- b) $B \rightarrow C$
- c) $C \rightarrow D$
- d) $A \rightarrow D$
- 112. A first order reaction is 20% complete in 10 min. What is the rate constant of the reaction?
 - a) 0.223
- b) 0.0223
- c) 0.322
- d) 0.0322
- 113. The activation energy of exothermic reaction $A \to B$ 80 kJ mol⁻¹. The heat of reaction is 200 kJmol⁻¹. The activation energy for the reaction $B \to A(\text{in kJ mol}^{-1})$ will be
 - a) 80

b) 120

d) 280

114.	A. An endothermic reaction $A \to B$ has an activation energy of 15 kcal/mol and the energy of reaction is 5			
	•	energy for the reaction B –		
		b) 15 kcal/mol		
115.			-1. If the concentration of	the reactant after 25 sec is
	0.5 <i>M</i> , the initial concentr			
	a) 0.5 <i>M</i>		c) 12.5 <i>M</i>	d) 1.0 <i>M</i>
116.	Rate constant for a reaction	on is $10^{-3}s^{-1}$. The to leave	25% reaction is	
	a) 693 s	b) 1386 s	c) 6930 s	d) 2029 s
117.	-	re by 10 K, the rate of react perature is increased from		many times the rate of
	a) 4	b) 8	c) 16	d) 32
118.		of a reaction is 2. When tem		
	reaction increases by		.	
	•	b) 100 times	c) 500 times	d) 250 times
119		reaction is 9 kcal/mol. Th		
1171	is raised from 295 to 300	· ·	e mereuse in the rate const	ant when its temperature
	a) 10%	b) 50%	c) 100%	d) 28%
120	-	-		
120.	For a reaction $\frac{-A}{2} \rightarrow 2B$, r	ate of disappearance of 'A'	is related to the rate of app	earance of B by the
	expression			
	a) $-\frac{d[A]}{d[A]} - \frac{1}{2}\frac{d[B]}{d[B]}$	b) $-\frac{d[A]}{dt} = \frac{1}{4}\frac{d[B]}{dt}$	$c) - \frac{d[A]}{d[B]} - \frac{d[B]}{d[B]}$	$d = \frac{d[A]}{d[A]} = A \frac{d[B]}{d[B]}$
121.				om 0.1 M to 0.025 M in 40
		ion when the concentration		
	a) 3.47×10^{-4} M/min	b) 3.47×10^{-5} M/min	c) $1.73 \times 10^{-4} \text{ M/min}$	d) 1.73×10^{-5} M/min
122.	In a 1st order reaction, rea	actant concentration C varie	es with time t as	
	a) 1/C increases linearly v	with t	b) Log C decreases linearl	y with t
	c) C decreases with 1/t	C rpůe	d) Log C decreases with 1	/t
123.	The rate constant of a ze	ro order reaction is 0.2 mo Then its initial concentrati	ol dm ⁻³ h ⁻¹ . If the concent	ration of the reactant after
		b) 0.15 mol dm ⁻³		d) 4.00 mol dm^{-3}
124.				. The rate of disappearance
	of <i>X</i> will be	n 1	arunce of 2 is 0.05 mor i	. The rate of disappearance
		b) $0.05 \text{ mol } L^{-1} \text{ min}^{-1}$	c) $0.1 \text{ mol } I^{-1} \text{ min}^{-1}$	d) 0.25 mol I ⁻¹ min ⁻¹
125		(g) + z(g) the half-life perio		
123.		luce to 10% of original cond		of time would the
	a) 20 min	b) 33 min	c) 15 min	d) 25 min
126	,	•	-	uj 23 ililii
		ergy for the decomposition	or N_2O_5 as,	
	$N_2O_5 \rightleftharpoons 2NO_2 + \frac{1}{2}O_2$			
	If the values of rate consta	ant $=3.45 imes10^{-5}$ at 27° C a	and rate constant = 6.9×1	0 ⁻³ at 67°C?
	a) 112.5 kJ	b) 200 kJ	c) 149.5 kJ	d) 11.25 kJ
127.	Rate equation for a second	d order reaction is:		
	a) $K = \frac{2.303}{t} \log \frac{a}{(a-x)}$	b) $K = \frac{1}{t} \log \frac{a}{a(a-x)}$	c) $K = \frac{1}{t} \cdot \frac{x}{a(a-x)}$	$d) K = \frac{1}{t^2} \cdot \frac{a}{(a-x)}$
	Which of the following sta		, ,	• ,
	_	be known from experimen	tal result and not from the	stoichiometry of reaction
		a reaction may be determine		_
	3. Overall order of reactio			

PHONE NO: 8583042324 Page | 11

 $A^m + B^n \to AB_x$ is (m+n)

4. Molecularity of a reaction refers to

	Gplus Education
(i) Molecularity of each of the elementary steps (sle	ow steps) in a multistep reaction
(ii) Molecularity of that particular step in a single s	tep reaction
Select the correct answer by using the codes given	below
a) 1, 3 and 4 b) 1, 2 and 3	c) 2, 3 and 4 d) 1, 2 and 4
129. For the order reaction with rate constant 'K' and in	itial concentration 'a', the half-life period given by
a) $\frac{1n2}{k}$ b) $\frac{1}{ka}$	c) $\frac{3}{2k a^2}$ d) None of these
$\frac{a}{k}$ $\frac{b}{ka}$	$\frac{c_{1}}{2k_{1}a^{2}}$
130. For the reaction , $2A + B \rightarrow C + D$, the order of rea	ction is
a) One with respect[B]	b) Two with respect to [A]
c) Three	d) Cannot be predicted
131. Which expression is wrong for fist order reaction?	
$2.303 (A_0)$	$t = (A_0)$
a) $k = \frac{2.303}{t} \log \left(\frac{A_0}{A_t} \right)$	b) $k = \frac{t}{2.303} \log \left(\frac{A_0}{A_t} \right)$
$t (A_t)$	d) Rate=k[A]
c) $-k = \frac{t}{2.303} \log \left(\frac{A_t}{A_0} \right)$, []
132. For a first order reaction, the half-life period is	
a) Dependent on the square of the initial concentra	tion.
b) Dependent on first power of initial concentration	
c) Dependent on the square root of initial concentr	
d) Independent on initial concentration	
133. Give relation between half reaction time $(t_{1/2})$ and	initial concentration of reactant for $(n-1)$ order
reaction.	initial concentration of reactant for (n 1) or act
	~ 1 or $\lceil p \rceil n + 1$ ~ 1 or $\lceil p \rceil n - 2$
a) $t_{1/2} \propto [R]_0$ b) $t_{1/2} \propto [R]_0^{2-n}$	
134. For a first order reaction $A \rightarrow \text{Product}$, the initi	
becomes 0.025 <i>M</i> . Calculate the rate of reaction at 1	reactant concentration of 0.01 <i>M</i> :
a) $3.47 \times 10^{-4} M \text{ min}^{-1}$	
b) $3.47 \times 10^{-5} M \text{ min}^{-1}$	
c) $1.735 \times 10^{-6} M \text{ min}^{-1}$ d) $1.735 \times 10^{-4} M \text{ min}^{-1}$	CATION
d) $1.735 \times 10^{-4} M \text{ min}^{-1}$	SHITOH
135. Rate of reaction	
a) Decreases with increase in temperature	
b) Increases with increase in temperature	
c) May increase or decrease with increase in temper	erature
d) Does not depends on temperature	
136. For the first order reaction with the rate constant	at k , which expression gives the rate half-life period?
(Initial conc. = a)	
_	c) $\frac{1}{k}$ d) $\frac{0.693}{k}$
a) $\frac{3}{2}ka^2$ b) $\frac{1}{ka}$	c) $\frac{1}{k}$ d) $\frac{0.693}{k}$
137. The rate constant (k') of one of the reaction is found	d to be double that of the rate constant (k'') of another
reaction. Then the relationship between the corres	ponding activation energies of the two reaction
$(E'_a$ and E''_a) can be represented as	
	c) $E'_1 = E'_a{}'$ d) $E'_a < E'_a{}'$
a) $E'_a > E''_a$ b) $E'_a = 4E''$	
a) $E_a' > E_a''$ b) $E_a' = 4E''$ 138. For a given reaction of first order, it takes 15 min	ute for the concentration to drop from $0.8 M \text{litre}^{-1}$ to
a) $E'_a > E'_a$ b) $E'_a = 4E''$ 138. For a given reaction of first order, it takes 15 min $0.4 M$ litre ⁻¹ . The time required for the concentration	ute for the concentration to drop from $0.8 M \text{litre}^{-1}$ to on to drop from $0.1 M \text{litre}^{-1}$ to $0.025 M \text{litre}^{-1}$ will be:
a) $E'_a > E'_a{}'$ b) $E'_a = 4E''$ 138. For a given reaction of first order, it takes 15 min $0.4 M$ litre ⁻¹ . The time required for the concentration a) 60 minute b) 15 minute	ute for the concentration to drop from $0.8 M \mathrm{litre^{-1}}$ to on to drop from $0.1 M \mathrm{litre^{-1}}$ to $0.025 M \mathrm{litre^{-1}}$ will be: c) 7.5 minute d) 30 minute
a) $E'_a > E'_a$ b) $E'_a = 4E''$ 138. For a given reaction of first order, it takes 15 min 0.4 M litre ⁻¹ . The time required for the concentration a) 60 minute b) 15 minute 139. The rate constant for a second order reaction is 8 × 10 minute	ute for the concentration to drop from $0.8 M \mathrm{litre^{-1}}$ to on to drop from $0.1 M \mathrm{litre^{-1}}$ to $0.025 M \mathrm{litre^{-1}}$ will be: c) 7.5 minute d) 30 minute
a) $E'_a > E'_a{}'$ b) $E'_a = 4E''$ 138. For a given reaction of first order, it takes 15 min 0.4 M litre ⁻¹ . The time required for the concentration a) 60 minute b) 15 minute 139. The rate constant for a second order reaction is 8 × be reduced to 0.5 M ?	ute for the concentration to drop from $0.8 M \rm litre^{-1}$ to on to drop from $0.1 M \rm litre^{-1}$ to $0.025 M \rm litre^{-1}$ will be: c) 7.5 minute d) 30 minute $< 10^{-5} M^{-1} \rm min^{-1}$. How long will it take a $1 M \rm solution$ to
a) $E'_a > E'_a{}'$ b) $E'_a = 4E''$ 138. For a given reaction of first order, it takes 15 min 0.4 M litre ⁻¹ . The time required for the concentration a) 60 minute b) 15 minute 139. The rate constant for a second order reaction is 8 × be reduced to 0.5 M ?	ute for the concentration to drop from $0.8 M \mathrm{litre^{-1}}$ to on to drop from $0.1 M \mathrm{litre^{-1}}$ to $0.025 M \mathrm{litre^{-1}}$ will be: c) 7.5 minute d) 30 minute

a)
$$-\frac{E_a}{2.303 R}$$
 b) $\frac{E_a}{R}$

b)
$$\frac{E_a}{R}$$

c)
$$-\frac{R}{2.303 E_a}$$

d) None of the above

141. The rate constants k_1 and k_2 for two different reactions are $10^{16}e^{-2000/T}$ and $10^{15}e^{-1000/T}$, respectively. The temperature at which $k_1 = k_2$ is:

a)
$$\frac{2000}{2.303}$$
 K

c) $\frac{1000}{2.303}$ K

142. If the volume of the vessel in which the reaction $2NO + O_2 \rightarrow 2NO_2$ is occurring is diminished to $1/3^{\rm rd}$ of its initial volume. The rate of the reaction will be increased by

a) 3 times

b) 9 times

c) 27 times

d) 36 times

143. The time for half-life period of a creation reaction $A \rightarrow$ products is 1 h. when the initial concentration of the reactant 'A', is 2.0 $mol L^{-1}$, how much time does it take for its concentration to come from 0.50 to $0.25 \ mol \ L^{-1}$, if it is a zero order reaction?

b) 0.5 h

c) 0.25 h

d) 1 h

144. For a reaction $A + B \rightarrow C + D$, if the concentration of A is doubled without altering the concentration of B, the rate gets doubled. If the concentration of B is increased by nine times without altering the concentration of A, the rate gets tripled. The order of the reaction is

a) 2

b) 1

d) 4/3

145. What fraction of a reactant showing first order remains after 40 minute if $t_{1/2}$ is 20 minute?

b) 1/2

c) 1/8

146. At 500 k, the half-life period of a gaseous reaction at an initial pressure of 80 kPa is 350 s. when the pressure is 40 kPa, the half-life period is 175 s. The order of the reaction is

b) One

d) Three

- 147. Which of the following statements are incorrect?
 - a) Rate of the reaction involving conversion of *ortho* hydrogen to para hydrogen $= -\frac{d[H_2]}{dt} = k[H_2]^{3/2}$
 - b) Rate of the reaction involving the thermal decomposition of acetaldehyde = $k[CH_3CHO]^{1/2}$
 - c) In the formation of phosgene from CO and Cl_2 , the rate of the reaction = $k[CO][Cl_2]^{1/2}$
 - d) In the decomposition of H_2O_2 , the rate of reaction = $k[H_2O_2]$
- 148. At 373 K, a gaseous reaction $A \rightarrow 2B + C$ is found to be of first order. Starting with pure A, the total pressure at the end of 10 min was 176 mm and after a long time when A was completely dissociated, it was 270 mm. The pressure of A at the end of 10 min was

a) 94 mm

b) 47 mm

c) 43 mm

d) 90 mm

149. For a reversible reaction, $A \rightleftharpoons B$, which one of the following statements is wrong from the given energy profile diagram?

Reaction coordinate

- a) Activation energy of forward reaction is greater than backward reaction
- b) The forward reaction is endothermic
- c) The threshold energy is less than that of activation energy
- d) The energy of activation of forward reaction is equal to the sum of heat of reaction and the energy of activation of backward reaction
- 150. Which one of the following is wrongly matched?
 - a) Saponification of $CH_3COOC_2H_5$ -second order reaction
 - b) Hydrolysis of *CH*₃*COOCH*₃
- -pseudo unimolecular

c) Decomposition of <i>H</i>			
d) Combination of H_2 151. For the reaction,	and Br_2 to give HBr $$ -first o	rder reaction	
151. For the reaction, $2N_2O_5(g) \rightarrow 4NO_2(g)$	$A \perp O(a)$		
	f NO_2 increase by 5.2 $ imes$ 10^{-3}	3M in 100 s than the rate	of the reactions
a) $1.3 \times 10^{-5} Ms^{-1}$		c) $7.6 \times 10^{-4} Ms^{-1}$	d) $2 \times 10^{-3} Ms^{-1}$
,	,	3	$10^{-2}M$ is nine times its rate at
	tration of $1.2 \times 10^{-3} M$. The		10 M is fille times its rate at
			2
a) $\frac{1}{2}$	b) $\frac{3}{4}$	c) $\frac{3}{2}$	d) $\frac{2}{3}$
	r zero order reaction $A \to pr$	roduct, is 100 min. How l	ong will it take in 80%
completion? a) 80 min	h) 160 min	a) 100 min	d) 200 min
•	b) 160 min	c) 100 min	d) 200 min
154. Consider the reaction	of B alone was doubled, the h	alf life did not change M	Then the concentration of A
	e rate increased by two time		
a) $L mol^{-1}s^{-1}$	b) No unit	c) $mol L^{-1}s^{-1}$	d) s^{-1}
•	te constant of a first order ch	•	u) s
• ,	te constant of a mist of defici		a
a) $k = \frac{1}{t} \cdot \frac{x}{a(a-x)}$		b) $k = \frac{2.303}{t} \log_{10} \frac{1}{(a)^2}$	$\frac{x}{(x-x)}$
, ,			,
c) $k = \frac{x}{t}$		d) $k = \frac{1}{2t} \left[\frac{1}{(a-x)^2} \right]$	$-\frac{1}{a^2}$
156. In gaseous reactions	important for the under	standing of the upper	atmosphere H ₂ O and O react
bimolecularly to form	two OH radicals. ΔH for thi	s reaction is 72kJ at 500	K and E_a is 77 kJ mol ⁻¹ , then E_a
for the bimolecular re	combination of two OH radi	cals to form H ₂ O and O is	::
a) 3 kJ mol ⁻¹	b) 4 kJ mol ⁻¹	c) 5 kJ mol ⁻¹	d) 7 kJ mol ⁻¹
157. Activation energy of a	reaction		
a) Is independent of to	emperature	CATION	
b) Increases with tem	emperature perature	CHITOIA	
c) Gets doubled for ev	rery 10 degree rise in tempe	rature	
d) Decreases with tem			
		e at reactant concentrati	ion $0.01M$ is found to be $2.0 \times$
	ife period of the reaction is:		
a) 30s	b) 300s	c) 220s	d) 347s
	ion, the plot of concentratio	n of reactant vs time is (i	ntercept refers to concentration
axis)	1 1		
	slope and zero intercept		
,	re slope and zero intercept	a	
	e slope and non-zero interc	_	
•	e slope and non-zero interce	-	eaton A if the concentration of
	The order of this reaction w	-	actor 4, if the concentration of
a) -1	b) -2	c) 2	d) 1
	of a reaction at 290 K was fo	-	
a) 6.4×10^{-3}	b) 1.28×10^{-2}	c) 9.6×10^{-3}	d) 3.2×10^{-4}
162. The term $\frac{-dc}{dt}$ in a rate	-	5, 7.5 A 10	w) 012 / 10
====		with time o	
•	ncentration of the reactant v	vitn time	
b) The concentration (or the reactant		

c) The change in concentration of the reactant

d) The velocity constant of the reaction

163. In a first order reaction the concentration of reactant decreases from $800 \ mol/dm^6$ to $50 \ mol/dm^6$ in 2×10^4 s. The rate constant of reaction in s^{-1} is b) 3.45×10^{-5} c) 1.386×10^{-4} d) 2×10^{-4} a) 2×10^4 164. Consider the chemical reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ The rate of this reaction can be expressed in terms of time derivative of concentration of $N_2(g)$, $H_2(g)$ and $NH_3(g)$. Identify the correct relationship amongst the rate expressions: a) Rate = $-d[N_2]/dt = -\frac{1}{3}d[H_2]/dt = \frac{1}{2}d[NH_3]/dt$ b) Rate = $-d[N_2]/dt = -3d[H_2]/dt = 2d[NH_3]/dt$ c) Rate = $d[N_2]/dt = \frac{1}{3}d[H_2]/dt = \frac{1}{2}d[NH_3]/dt$ d) Rate = $-d[N_2]/dt = -d[H_2]/dt = d[NH_3]/dt$ 165. Rate of reaction can be expressed by following rate expression, rate= $k[A]^2[B]$, if concentration of A is increased by 3 times and concentration of B is increased by 2 times, how many times rate of reaction increases? b) 27 times c) 18 times d) 8 times a) 9 times 166. As the reaction progresses, the rate of reaction b) Decreases a) Increases c) Remains constant d) First increases, then decreases 167. The data for the reaction, $A+B\rightarrow C$ $\operatorname{Ex} [A]_0 [B]_0$ Initial rate 1 0.012 0.035 0.10 2 0.024 0.070 0.80 3 0.024 0.035 0.10

0.012 | 0.070 | 0.80 The rate law corresponds to the above data is

a)
$$rate = k[B]^3$$

b)
$$rate = k[B]^{4}$$

c)
$$rate = k[A][B]^3$$

d)
$$rate = k [A]^2 [B]^2$$

168. In a reaction, when the concentration of reactant is increased two times, the increase in rate of reaction was four times. Order of reaction is

169. For the reaction

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

The rate of change of concentration for hydrogen is $0.3 \times 10^{-4} Ms^{-1}$

The rates of change of concentration of ammonia is

a)
$$-0.2 \times 10^{-4}$$

b)
$$0.2 \times 10^{-4}$$

c)
$$0.1 \times 10^{-4}$$

d)
$$0.3 \times 10^{-4}$$

170. Which of the following statement is in accordance with collision theory?

Rate is directly proportional to collision frequency

Rate depend upon orientation of atoms

Temperature determines the rate

a) Only III

b) Only I and II

c) Only II and III

d) All of these

171. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + 22 \text{ kcal.}$

The activation energy for the forward reaction is 50 kcal. What is the activation energy for the backward reaction?

- a) -72 kcal
- b) -28 kcal
- c) +28 kcal
- d) +72 kcal

172. According to collision theory:

- a) Collisions are sufficiently violent
- b) All collision are responsible for reaction
- c) All collisions are effective
- d) Only highly energetic molecules have enough energy to react

- 173. The rate constant of a first order reaction whose half-life is 480 s is
 - a) $1.44 \, s^{-1}$
- b) $1.44 \times 10^{-3} \text{ s}^{-1}$
- c) $2.88 \times 10^{-3} \text{ s}^{-1}$
- d) $0.72 \times 10^{-3} \text{ s}^{-1}$

- 174. $2A \rightarrow B + C$; It would be a zero order reaction when:
 - a) The rate of reaction is proportional to square of conc. of A
 - b) The rate of reaction remains same at any conc. of A
 - c) The rate remains unchanged at any conc. of B and C
 - d) The rate of reaction doubles if conc. of *B* is increased to double
- 175. For a reaction $A + 2B \rightarrow C$, rate is given by

$$r = K[A][B]^2$$

The order of reaction is:

a) 3

b) 6

c) 5

d) 7

- 176. Rate constant for a reaction is λ . Average life is represent by

- 177. The plot between concentration versus time for a zero order reaction is represented by

178. For the decomposition of $N_2O_5(g)$, it is given that:

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g);$$

Activation energy E_a

$$N_2O_5(g) \rightarrow 2NO_2(g) + (1/2)O_2(g);$$

Activation energy E'_a

then;

- a) $E_a = E'_a$
- b) $E_a > E'_a$
- d) $E_a = 2E'_a$
- 179. During the kinetic study of the reaction $2A + B \rightarrow C + D$ following results were obtained.

Run	[<i>A</i>] in <i>M</i>	[B]	in	Initial rate of
		Μ		formation of
				D in Ms^{-1}
I	0.1	0.1		6.0×10^{-3}
II	0.3	0.2		7.2×10^{-2}
III	0.3	0.4		2.88×10^{-1}
IV	0.4	0.1		2.40×10^{-2}

On the basis of above data which one is correct:

- a) $r = k[A]^2[B]$
- b) r = k[A][B]
- c) $r = k[A^2][B]^2$ d) $r = k[A][B]^2$
- 180. If the reaction rate at a given temperature becomes slower then
 - a) The free energy of activation is higher
 - b) The free energy of activation is lower
 - c) The entropy changes
 - d) The initial concentration of the reactants remains constant
- 181. The number of molecules of the reactants taking part in a single step of the reaction tells about:
 - a) Molecularity of the reaction
 - b) Mechanism of the reaction
 - c) Order of reaction
 - d) All of the above
- 182. For the reaction system,

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

Volume is suddenly reduced to half its value by increasing the pressure on it. If the reaction is of first order with respect to O_2 and second order with respect to NO; the rate of reaction will a) Diminish to one –fourth of its initial value b) Diminish to one -eighth of its initial value c) Increase to eight time of its initial value d) Increase to four time of its initial value 183. The reaction, $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH$ is: a) Biomolecular reaction b) II order reaction c) Both (a) and (b) d) None of these 184. Which is correct relation in between $\frac{dc}{dt}$, $\frac{dn}{dt}$ and $\frac{dP}{dt}$, where c, n, and P, represent concentration, mole and pressure terms for gaseous phase reactant $A(g) \rightarrow \text{product}$? a) $-\frac{dc}{dt} = -\frac{1}{V} \frac{dn}{dt}$ $= -\frac{1}{RT} \frac{dP}{dt}$ b) $\frac{dc}{dt} = \frac{dn}{dt} = -\frac{dP}{dt}$ c) $\frac{dc}{dt} = \frac{RT}{V} \frac{dn}{dt} = -\frac{dP}{dt}$ d) All of the above 185. The rate constant of a reaction is found to be $3 \times 10^{-3} mol \ L^{-1} min^{-1}$. The order of reaction is b) 1 c) 2 d) 1.5 a) Zero 186. A reactant (*A*) forms two products : $A \stackrel{k_2}{\rightarrow} B$, Activation energy E_{a_1} $A \stackrel{k_2}{\rightarrow} C$, Activation energy E_{a_2} If $E_{a_2} = 2 E_{a_1}$, than k_1 and k_2 are related as a) $k_1 = 2k_2e_{E_{a_2}}/RT$ b) $k_1 = k_2e_{E_{a_1}}/RT$ c) $k_2 = k_1e_{E_{a_2}}/RT$ d) $k_1 = Ak_2e_{E_{a_1}}/RT$ 187. For the reaction $2A + B \rightarrow A_2B$, the rate Law given is d) $k[A]^2[B]$ b) k[A]³[B] a) k[2A][B] 188. For producing the effective collisions the colliding molecules must have: a) A certain minimum amount of energy b) Energy lesser than threshold energy c) Improper orientation d) Proper orientation and energy equal or greater than threshold energy 189. The chemical reaction $20_3 \rightarrow 30_2$ proceeds as follows $0_3 \rightleftharpoons 0_2 + 0 \text{ (fast)}$ $0 + 0_3 \rightarrow 20_2 \text{ (slow)}$ The rate law expression should be a) $r = k[0_3]^2$ b) $r = k[0_3]^2 [0_2]^{-1}$ c) $r = k[0_3][0_2]$ d) Unpredictable 190. Two substances A and B are present such that [A] = 4[B] and half-life of A is 5 minute and of B is 15 minute. If they start decaying at the same time following first order, how much time later will the concentration of both of them would be same? b) 10 minute a) 15 minute c) 5 minute d) 12 minute 191. A reaction involving A, B and C as reactants is found to obey the rate law, rate= $k[A]^x[B]^y[C]^z$. When the concentration of A, B and C are doubled separately, the rate is also found to increase two, zero and four times respectively. The overall order of the reaction is d) 4 b) 2 c) 3 192. The rate constant of *n*th order has units: a) $litre^{1-n}mol^{1-n}sec^{-1}$ b) $mol^{n-1}litre^{n-1}sec^{-1}$ c) $mol^{1-n}litre^{n-1}sec^{-1}$ d) None of these 193. The reaction; N_2O_5 in $2NO_2 + 1/2 O_2(g)$ is of first order for N_2O_5 with rate constant $6.2 \times 10^{-4} \text{s}^{-1}$. What is the value of rate of reaction when $[N_2 O_5] = 1.25$ mole L⁻¹?

a) 5.15×10^{-5} mole L⁻¹s⁻¹ b) 6.35×10^{-3} mole L⁻¹s⁻¹

	Opius zaucutioi
c) 7.75×10^{-4} mole L ⁻¹ s ⁻¹ d) 3.85×10^{-4} mole L ⁻¹ s ⁻¹	
194. $t_{1/4}$ can be taken as the time taken for the concent	tration of reactant to drop to $\frac{3}{2}$ of its initial value. If the
rate constant for a first order reaction is k the $t_{1/4}$	ī
,	
a) 0.75 /k b) 0.69 /k	c) 0.29 /k d) 0.10 /k
195. In a chemical reaction two reactants take part. Th	· · · · · · · · · · · · · · · · · · ·
	rtional to the concentration of the other. The order of
reaction is	
a) 0 b) 1	c) 2 d) 4
196. Which of the following is not the example of pseud	do unimolecular reaction?
a) $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$	b) $C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_6H_{12}O_6 + C_6H_{12}O_6$ Glucose fructose
c) $CH_3COCl + H_2O \rightarrow CH_3COOH + HCl$	d) $CH_3COOC_2H_5 + H_2O \xrightarrow{OH^-} CH_3COOH + C_2H_5OH$
197. The differential rate law for the reaction,	
$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$	
	$d[NH_3] d[O_2] 1d[NO] 1d[H_2O]$
a) $-\frac{d}{dt} = -\frac{d}{dt} = -\frac{d}{dt} = -\frac{d}{dt} = -\frac{d}{dt}$	b) $\frac{d}{dt} = \frac{d}{dt} = -\frac{d}{dt} = -\frac{d}{dt} = -\frac{d}{6} \frac{d}{dt}$
$1 d[NH_3] 1 d[O_2] 1 d[NO] 1 d[H_2O]$	$1 d[NH_3]$ $1 d[O_2]$ $1 d[NO]$ $1 d[H_2O]$
c) $\frac{1}{4} \frac{dt}{dt} = \frac{1}{5} \frac{dt}{dt} = \frac{1}{4} \frac{dt}{dt} = \frac{1}{6} \frac{dt}{dt}$	b) $\frac{d[NH_3]}{dt} = \frac{d[O_2]}{dt} = -\frac{1}{4} \frac{d[NO]}{dt} = -\frac{1}{6} \frac{d[H_2O]}{dt}$ d) $-\frac{1}{4} \frac{d[NH_3]}{dt} = -\frac{1}{5} \frac{d[O_2]}{dt} = \frac{1}{4} \frac{d[NO]}{dt} = \frac{1}{6} \frac{d[H_2O]}{dt}$
198. 1 g of $_{79}{\rm Au}^{198} (t_{1/2} = 65~{\rm h})$ give stable mercury b	y β- emission. What amount of mercury will left after
260 h?	
a) 0.9375 g b) 0.3758 g	c) 0.7586 g d) 0.9000 g
199. The rate law for the chemical reaction	cy on soo g
$2NO_2$ CL $\rightarrow 2NO_2 + CL_2$ is rate =k[NO_2 Cl].The rate	determining sten is
a) $2NO_2Cl \rightarrow 2NO_2 + 2Cl$	b) $NO_2 + Cl_2 \rightarrow NO_2Cl + Cl$
c) $NO_2Cl + Cl \rightarrow NO_2 + Cl_2$	d) $NO_2Cl \rightarrow NO_2+Cl$
200. The rate law for the reaction	uj No201 > No2 Ci
$RCI + NaOH \rightarrow ROH + NaCI$ is given by Rate = k	PCIL. The rate of this reaction
a) Is doubled by doubling the concentration of Na	-
b) Is halved by reducing the concentration of RCl	
c) Is increased by increasing the temperature of t	ne reaction
d) In unaffected by change in temperature	.l ; L. L
201. The rate constant of a reaction increases by 5% w	nen its temperature is raised from 27°C to 28°C. The
activation energy of the reaction is	2466114
a) 36.6 kJ/mol b) 16.6 kJ/mol	c) 46.6 kJ/mol d) 26.6 kJ/mol
202 of a reaction cannot be determined expe	-
a) Order b) Rate	c) Rate of constant d) Molecularity
	tial concentration of 10 mole per litre and 80% of the
	e reaction is carried out with an initial concentration of S
mol per litre the percentage of the reactant chang	-
a) 40 b) 80	c) 160 d) Cannot be calculated
	s observed that doubling the concentration of <i>A</i> causes
· -	t doubling the amount of B does not affect the rate (k_2) .
The rate equation is	
a) $k = k_1 + k_2$ b) $k = k_1 k_2$	c) $k = \frac{k_1}{k_2}$ d) $k^{1/2} = k_1 \times k_2$
	k_2
205. Which increases on increase of temperature?	
a) Energy of activation (E_a)	b) Collision frequency (Z)
c) Rate constant (k)	d) Both (a) and (c)

- 206. In the first order reaction, the concentration of the reactants is reduced to 25% in one hour. The half-life period of the reaction is

b) 4h

c) 1/2h

- d) 1/4h
- 207. In the given graph the activation energy, E_a for the reverse reaction will be

Reaction coordinate

- a) 150 kJ
- b) 50 kJ

- c) 200 kJ
- 208. What is the order of a reaction which has a rate expression rate = $k[A]^{3/2}[B]^{-1}$?

b) Zero

- d) None of these
- 209. For a fist order reaction, the concentration changes from 0.8 to 0.4 in 15 min. The time taken for the concentration to change from 0.1 M to 0.025 M is
 - a) 30 Min
- b) 15 Min
- c) 7.5 min
- d) 60 min

210. Give the hypothetical reaction mechanism

$$A \xrightarrow{I} B \xrightarrow{II} C \xrightarrow{III} D \xrightarrow{IV} E$$
 and the date as

Species formed	Rate of its Formation
	0.002 mol/h, per mole of
В	A
	0.030 mol/h, per mole of
С	B OPLUS EDUCATION
	0.011 mol/h, per mole of
D	С
	0.420 mol/h, per mole of
E	D

The rate determining step is

- a) Step I
- b) Step II
- c) Step III
- d) Step IV
- 211. For $A + B \rightarrow C + D$, $\Delta H = -20$ kJ mol⁻¹ the activation energy of the forward reaction is 85kJ mol⁻¹. The activation energy for backward reaction is ...k[mol⁻¹.

- a) 65 b) 105 c) 85 d) 40 212. For the reaction N₂ + 3H₂ \rightarrow 2NH₃, the rate $\frac{d[NH_3]}{dt} = 2 \times 10^{-4} M s^{-1}$. Therefore, the rate $-\frac{d[N_2]}{dt}$ is given
- b) $10^4 M \text{ s}^{-1}$
- c) $10^{-2}M \text{ s}^{-1}$
- d) 10^{-4} s M^{-1}
- 213. The reaction $L \rightarrow M$ is started with 10.0 g of L. After 30 and 90 min, 5.0 g and 1.25 g of L respectively are left. The order of the reaction is

b) 1

- d) 3
- 214. The rate of a reaction is expressed in different ways as follows

$$+\frac{1}{2}\frac{d[C]}{dt} = -\frac{1}{5}\frac{d[D]}{dt} = +\frac{1}{3}\frac{d[A]}{dt} = -\frac{d[B]}{dt}$$

The reaction is

a) $4A + B \to 2C + 3D$

b) $B + 5D \rightarrow 3A + 2C$

c) $4A + 2B \rightarrow 2C + 3D$

d) $B + \frac{1}{2}D \to 4A + 2C$

	5. The rate of elementary reaction, $A \rightarrow B$, increases by 100 times when the concentration of A is increased		
ten folds. The order of the reaction with respect to A is:			
a) 1 b) 2 c) 10 d) 100			
216. The differential rate law for the reaction $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ is			
a) $-\frac{d[NH_3]}{dt} = -\frac{d[O_2]}{dt} = -\frac{d[NO]}{dt} = -\frac{d[H_2O]}{dt}$ b) $\frac{d[NH_3]}{dt} = \frac{d[O_2]}{dt} = -\frac{1}{4}\frac{d[NO]}{dt} = -\frac{1}{6}$ c) $\frac{1}{4}\frac{d[NH_3]}{dt} = \frac{1}{5}\frac{d[O_2]}{dt} = \frac{1}{4}\frac{d[NO]}{dt} = \frac{1}{6}\frac{d[NO]}{dt}$ d) $-\frac{1}{4}\frac{d[NH_3]}{dt} = -\frac{1}{5}\frac{d[O_2]}{dt} = \frac{1}{4}\frac{d[NO]}{dt}$	$d[H_2O]$		
$dt = -\frac{dt}{dt} $	$\frac{dt}{dt}$		
c) $\frac{1}{d}[NH_3] = \frac{1}{d}[O_2] = \frac{1}{d}[NO] = \frac{1}{d}[H_2O]$ d) $\frac{1}{d}[NH_3] = \frac{1}{d}[O_2] = \frac{1}{d}[NO]$	$=\frac{1}{2}\frac{d[H_2O]}{d[H_2O]}$		
4 dt 5 dt 4 dt 6 dt 4 dt 5 dt 4 dt	6 dt		
217. For the reaction $A \rightarrow B$, when concentration of A is made 1.5 times, the rate of reaction $A \rightarrow B$	becomes 1.837		
times. The order of reaction is			
a) 1 b) 1.5 c) 2 d) 2.5	_		
218. For the reaction, $Cl_2 + 2l^- \rightarrow I_2 + 2Cl^-$, the initial concentration of I^- was 0.20 mol L^{-1} and t			
concentration after 20 min was 0.20 mol L^{-1} . Then the rate of formation of I_2 in mol L^{-1} wou			
a) 1×10^{-4} b) 5×10^{-4} c) 1×10^{-3} d) 5×10^{-3}			
219. The energies of activation for forward and reverse reactions for $A_2+B_2 \rightleftharpoons 2AB$ are 180 kJ m			
kJ mol^{-1} respectively. The presence of a catalyst lowers the activation energy of both (forward)			
reverse) reactions by 100 kJ mol ⁻¹ . The enthalpy change of the reaction $(A_2 + B_2 \rightarrow 2AB)$ in	ı the presence		
of catalyst will be (in kJ mol ⁻¹)			
a) 300 b) 120 c) 280 d) 20			
220. Which statement is correct?			
a) Reactions with low activation energy are usually exothermic			
b) The rate law sometimes enable to deduce the mechanism of a reaction			
c) The rate law for reaction is an algebraic expression relating the forward reaction rate to $\boldsymbol{\mu}$	oroduct		
concentration			
d) Increase in the total pressure of a gas phase reaction increase the fraction of collisions eff	ective in		
producing reactions			
221. The temperature coefficient of a reaction is:			
a) The rate constant at a fixed temperature			
b) The ratio of rate constant at two temperature			
c) The ratio of rate constant differing by 10° preferably 25° and 35°C			
d) None of the above			
222. The term $(-dc/dt)$ in rate equation refers to:			
a) The concentration of a reactant			
b) The decrease in concentration of the reactant with time			
c) The velocity constant of reaction			
d) None of the above			
223. For a first order reaction, the initial concentration of a reactant is $0.05M$. After $45m$ in it is d	lecreased by		
0.015 M. calculation half reaction time $\left(t_{1/2} ight)$			
a) 87.42 min b) 25.90 min c) 78.72 min d) 77.20 mi	n		
224. The order of a gaseous phase reaction for which rate becomes half if volume of containe			
amount of reactant is doubled is:	J		
a) 1 b) 1/2 c) 2 d) 1/3			
225. For the reaction, $N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$			
Given, $-\frac{d[N_2O_5]}{dt} = K_1[N_2O_5]$			
$\frac{d[\mathrm{NO}_2]}{dt} = K_2[\mathrm{N}_2\mathrm{O}_5]$			
$\operatorname{and} \frac{d[O_2]}{dt} = K_3[N_2O_5]$			
The relation in between K_1 , K_2 and K_3 is:			
a) $2K_1 = K_2 = 4K_3$ b) $K_1 = K_2 = K_3$ c) $2K_1 = 4K_2 = K_3$ d) None of t	these		

2	226. Temperature dep	endent equation can be wr	itten as	
	a) In $k = \operatorname{In} A - e$	$e^{E_a/RT}$	b) In $k = \operatorname{In} A + e^{E}$	T_a/RT
	c) In $k = \operatorname{In} A - e$	RT/E_a	d) None of these	
2	227. A first order react	tion is 50% complete in 30	min at 27°C and in 10 min a	t 47°C. The energy of activation of
	the reaction is			
	a) 52.8 kJ	b) 23.6 kJ	c) 29.5 kJ	d) 43.8 kJ
,		ncentration of the reactant	· ·	,
	a) Activation ener		b) Heat of reaction	
	c) Collision frequ		d) Threshold energ	
,		•	,	n, a straight line is obtained. The
	slope of the line is	=	,	,
	- -	-	2.303	E_{α}
	a) $-\frac{E_a}{2.303}$	b) $-\frac{E_a}{2.303R}$	c) $-\frac{1}{E_aR}$	d) $-\frac{E_a}{R}$
,	230. For the two gased	ous reactions, following dat		
	$A \to B; k_1 = 10^{10}$		Ü	
	$C \to D; k_2 = 10^{12}$			
		at which k_1 becomes equal	to k_0 is	
	a) 400 K	b) 1000 K	c) 800 K	d) 1500 K
	,	,	-	2 atm to 1.2 atm in 50 minute. The
•		terms of molarity per seco		a dem to 1,2 dem m so minute. The
	a) 1.09×10^{-6}		c) 1.09×10^{-7}	d) 1.09×10^{-8}
	•	,	en in excess, then it is an exa	,
4	a) Second order r		b) Zero order reac	
	c) Pseudounimol		d) First order reac	
	•	nical reaction depends upo	The state of the s	LIGH
4	a) Time	b) Pressure	c) Concentration	d) All of these
	234. The rate constant	•	c) concentration	d) An of these
4	254. The rate constant $\rightarrow 4$ NO \rightarrow	From the reaction, $0 ext{ is } 2.0 imes 10^{-5} ext{ s}^{-1}$ If the	rate is 2.40×10^{-5} then the	e concentration of N ₂ O ₅ (in mol/L)
	$is \qquad is$	0 ₂ is 3.0 × 10 s . If the	Tate is 2.40 × 10 then the	e concentration of N ₂ O ₅ (in mol/L)
	a) 1.4	b) 1.2	c) 0.04	d) 0.8
	*	•	of o.04 n of ammonium nitrite in aq	
4	•	-	i oi aiiiiioiiiuiii iiiti ite iii aq	deous solution.
	Vol. of N_2 in cc	Time (min)		
	6.25	10		
	9.00	15		
	11.40	20		
	13.65	25		
	33.05	Infinity		
	The order of reac		-) T	J) Tl
	a) Zero	b) One	c) Two	d) Three
4	^{236.} For a reaction <i>A</i> -	\rightarrow Product, rate law is $-\frac{\alpha P}{d}$	$\frac{dJ}{dt} = K[A]_0$. The concentration	on of A left after time t when $t = \frac{1}{K}$
	is:			
	a) $\frac{[A]_0}{a}$	b) $[A]_0 \times e$	c) $\frac{[A]_0}{e^2}$	1 1
	a) <u>—</u> e	ој [А] ₀ х е	$\frac{c}{e^2}$	$d)\frac{1}{[A]_0}$
2	237. For a first order r	eaction $A \to P$, the tempera	nture (T) dependent rate con	(k) was found to follow the
	equation.			
	$\log k = -(2000)/$	T + 6.0		
	The pre-exponent	tial factor A and the activat	ion energy E_a , respectively,	are
	a) $1.0 \times 10^6 \text{s}^{-1}$ ar		b) 6.0 s ⁻¹ and 16.6	
	-	₹	=	· ·

d) $1.0 \times 10^6 \text{s}^{-1}$ and 38.3 kJ mol^{-1}

c) $1.0 \times 10^6 \text{s}^{-1}$ and 16.6 kJ mol^{-1}

			Gpius Education
238. In Arrhenius equation a) Boltzmann factor	$K = Ae^{-E_a/RT}$, the quantity - b) Frequency factor		d) None of these
239. Among the following re		,	,
a) Burning of coal			
b) Rusting of iron in mo	oist air		
c) Conversion of mono	clinic sulphur to rhombic su	lphur	
d) Precipitation of silve	er chloride by mixing silver r	nitrate and sodium chlorid	e solutions
240. The following homoger		e experimentally found to	be second order overall.
$1.2NO \rightarrow N_2 + O_2 \ 2.3C$			
$3.N_2O_3 \rightarrow NO + NO_2$			
	st likely to be elementary rea		=
a) 3 only 241. Consider a reaction; <i>a0</i>	b) 1 and 3	c) 1 and 4	d) 3 and 4
		is doubled the rate increas	ses by eight times. However,
			rate is doubled. The overall of
the reaction,	a is adubted keeping the con	need at the maca, the	race is adubted, The overall of
a) 0	b) 1	c) 2	d) 3
242. The rate constant for a	•	,	,
$\sum_{k=1}^{\infty} \frac{c_0 - c_t}{c_0}$	$b) k = \frac{c_0 - c_t}{t}$	$k = \frac{c_0}{c_0}$	d) $k = \frac{c_0}{2t}$
		· ·	20
243. The ratio of the times f			
a) 2	b) 4	c) 8	d) 10
244. The activation energy f	The state of the s	on $A \to B$ is E_a in forward of	direction. The activation
energy for the reverse a) Is negative of E_a	reaction	b) Is always less than E_0	
c) Can be less than or r	nore than F	d) Is always double of E	
-		-	a eaction be halved if the rate
			cuction so harved it the rate
a) 600	⁻³ s ⁻¹ ? b) 100	c) 60	d) 10
246. For the reaction $A + 2I$			en by
$a) + \frac{d[A]}{dt} = +\frac{1}{2} \frac{d[B]}{dt} =$	d[C]	b) $\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = -$	d[C]
$\frac{df}{dt} = +\frac{2}{2}\frac{dt}{dt} =$	$\frac{dt}{dt}$	$\frac{dt}{dt} = -\frac{1}{2}\frac{dt}{dt} = -\frac{1}{2}\frac{dt}{dt}$	dt
c) $-\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} =$	$=+\frac{d[C]}{L}$	d) $+\frac{d[A]}{dt} = +\frac{1}{2}\frac{d[B]}{dt} =$	$+\frac{d[C]}{L}$
at 2 at 247. Which of the following	000	2 000	dt
a) Collision theory	theory is not related to ther	incar kinetics:	
b) Activated complex the	neorv		
c) Absolute reaction ra	=		
d) VSPER theory	·		
248. For the chemical chang	$ge A \rightarrow B$ it is found that the	rate of reaction doubles wh	nen the concentration is
increased by 4 times. T	The order of the reaction is		
a) One	b) Two	c) Half	d) None of these
249. If a certain reaction is f	_	second order with respect	to B and zero order with
	is the order of reaction?		
a) First	b) Second	c) Third	d) Zero
250. If a plot of $\log_{10} C$ vers			
a) Zero order	b) First order	c) Second order	d) Third order
251. The given reaction $2\text{FeCl}_2 + \text{SnCl}_2 \rightarrow 2\text{FeC}$	$Cl_2 + SnCl_4$ is an example of		
a) Third order reaction		b) Second order reactio	n
c) First order reaction	•	d) None of these	
,		,	

				Gpius Eaucation
252	The order for the reactio	n, $H_2 + Cl_2 \xrightarrow{hv} 2HCl$ over wa	ater is:	
	a) 0	b) 1	c) 2	d) 3
253	. The inversion of cane sug	gar into glucose and fructos	se is:	
	a) I order	b) II order	c) III order	d) Zero order
254	For the reaction, $N_2 + 3H$	$H_2 \rightarrow 2NH_3$, if $\frac{d[NH_3]}{d[NH_3]} = 2 \times$	10^{-4} mol $L^{-1}s^{-1}$, the value	e of $\frac{-d[H_2]}{dt}$ would be:
			c) $4 \times 10^{-4} \text{ mol L}^{-1} \text{s}^{-1}$	
255				
200	For the reaction $(g)^{N_2O_5} \longrightarrow (g)^{N_2O_5}$	(g) (g) , the rate of disapp	bearance of N_2O_5 is 6.25 \times	10^{-3} mol L ⁻¹ s ⁻¹ . The rate of
	formation of NO_2 and O_2	will be respectively.		
		1 and 6.25 × 10 $^{-3}$ mol L $^{-1}$ s		
	-	1 and 3.125 × 10^{-3} mol L $^{-1}$		
	-	1 and 3.125 × 10^{-3} mol L $^{-1}$		
	•	1 and 6.25 × 10^{-3} mol L $^{-1}$ s		
256		s are reduced by n times, th	en the value of rate consta	nt of first order will:
	a) Increase by <i>n</i> times			
	b) Decrease by factor of a	n		
	c) Not change			
257	d) None of these	(1):-		
257	. Unit of frequency factor	(A) IS	h) mal/L v a	
	a) mol/Lc) Depends upon order of	of reaction	b) mol/L× sd) It does not have any u	oit.
258	. The ionic reactions are u		u) it does not have any ui	iiit
230	a) It does not involve bo		>	
	=		greater than that between	neutral molecules
	c) Collision frequency is		Si cator than that between	moderal moreodies
	d) The reactions are high	,		
259	_	n, 75% of the reactant gets	disappeared in 1.386h. The	rate constant of the
	reaction is	JPLUS EDU	LATION	
	a) $3.0 \times 10^{-3} s^{-1}$	b) $2.8 \times 10^{-4} s^{-1}$	c) $17.2 \times 10^{-3} s^{-1}$	d) $1.8 \times 10^{-3} s^{-1}$
260		stance present in 1 litre vol	ume is known as:	
	a) Activity	b) Molar concentration	c) Active mass	d) None of these
261	. The rate of a reaction is o	doubled when temperature	increases by 10°C. If temper	erature is increased by
	100°C, then rate of reacti	on will become		
	a) 64 times	b) 256 times	c) 512 times	d) 1024 times
262	. For a hypothetical reacti	on		
	$A + 2B \rightarrow 3C + D$			
	d[C]/dt is equal to	2 1[2]	ומון	1 F A I
	a) $\frac{3d[A]}{dt}$	b) $-\frac{3}{2}\frac{d[B]}{dt}$	c) $-\frac{d[B]}{dt}$	$d) - \frac{d[A]}{dt}$
263	ui	2 666	ui	at and 50 respectively. What
203	is the order of reaction?	ics is 0,1 and 0,4 s, Then Te	active concentration is 200	and 30 respectively, what
	a) 0	b) 2	c) 1	d) 4
264	. Consider following two r		9) -	, ·
	$A \to product - \frac{d[A]}{dt} = k$	$C_1[A]^{\circ}$		
	$B \to product - \frac{d[B]}{dt} = k$	$x_2[B]^0$		
		in term of molarity ($mol\ L^-$		
	a) s^{-1} , $M s^{-1}L^{-1}$	b) Ms^{-1} , Ms^{-1}	c) s^{-1} , $M^{-1}s^{-1}$	d) Ms^{-1} , Ls^{-1}

265. The reaction, NO + $(1/2)O_2 \rightarrow NO_2$ exhibits:

Gplus Education a) Small negative temperature coefficient b) Decrease in value of *K* with temperature c) Decrease in value of rate with temperature d) All of the above 266. Consider the reaction, $Cl_2(aq) + H_2S(aq) \rightarrow S(s) + 2H^+(aq) + 2Cl^-(aq)$ the rate equation for this reaction is, rate = Which of these mechanisms is/are consistent with this rate equation? $Cl_2 + H_2S(aq) \to H^+Cl^- + Cl^+ + HS^-(slow)$ $Cl^+ + HS^- \rightarrow H^+Cl^- + S(fast)$ II. $H_2S \leftrightarrow H^+ + HS^-(fast\ equilibrium)$ $Cl_2 + HS^- \rightarrow 2Cl^- + H^+S(slow)$ b) Both (A) and (B) c) Neither (A) nor (B) d) (A)Only 267. In a reaction $2A \rightarrow \text{Products}$; the concentration of A decreases from 0.5 mol litre⁻¹ to 0.4 mol litre⁻¹ in 10 minute. The rate of reaction during this interval is: a) $0.05 M \, \text{min}^{-1}$ c) $0.5 M \text{ min}^{-1}$ b) $0.005 M \text{ min}^{-1}$ d) 5 $M \, \text{min}^{-1}$ 268. What is the two third life of a first order reaction having $k = 5.48 \times 10^{-14} \text{ s}^{-1}$? a) 2.01×10^{13} s b) 2.01×10^{12} s c) 4.02×10^{13} s d) 4.02×10^{26} s 269. In a 1st order reaction the concentration of reactant decreases from 800 mol/dm 3 to 50 mol/dm 3 in 2 \times 10^4 s. The rate constant of reaction in S^{-1} is c) 1.386×10^{-4} a) 2×10^4 b) 3.45×10^{-5} d) 2×10^{-4} 270. The rate constant of a first order reaction is $6.9 \times 10^{-3} s^{-1}$. How much time will it take to reduce the initial concentration to its 1/8th value? d) 400s a) 100s b) 200s c) 300s 271. In a reaction, the rate expression is, rate = $K[A][B]^{2/3}[C]^0$, the order of reaction is: b) 2 c) 5/3d) Zero 272. In the Synthesis of ammonia by Haber process, if 60 moles of ammonia is obtained in one hour, then the rate of disappearance of nitrogen is c) 0.5 mol/min d) 60 mol/min a) 30 mol/min b) 6 mol/min 273. Half-life period of second order reaction is a) Proportional to initial concentration of reactants b) Independent of initial concentration of reactants c) Inversely proportional to initial concentration of reactants d) None of the above 274. A reactant with initial concentration 1.386 mol litre⁻¹ showing first order change takes 40 minute to become half. If it shows zero order change taking 20 minute to becomes half under the similar conditions, the ratio, $\frac{K_1}{K_0}$ for first order and zero order kinetics will be: a) $0.5 \text{ mol}^{-1} \text{ litre}$ b) 1.0 mol/litre c) 1.5 mol/litre d) 2.0 mol^{-1} litrte 275. The reason for almost doubling the rate of reaction on increasing the temperature of the reaction system by 10°C is a) The value of threshold energy increases b) Collision frequency increases c) The fraction of the molecules having energy equal to threshold energy increases d) Activation energy decreases 276. Plot of log(a-x) versus time t is straight line. This indicates that the reaction is of: a) Second order b) First order c) Zero order d) Third order 277. The $t_{1/2}$ of the first order reaction is a) Dependent of initial concentration b) Directly proportional to initial concentration c) indirectly proportional to initial concentration d) Independent of initial concentration

GPLUS EDUCATION	WEB: <u>WWW.GPLU</u>	JSEDUCATION.ORG	PHONE NO: 8583042324 Page 25
a) $\frac{2k_1}{k_2}[NO_2]^2$		b) 2k ₁ [NO ₂] ²	$2-2k_2[N_2O_4]$
	arance of NO ₂ is equa		2
	arance of NO ₂ is equa	l to	
$2NO_2 \stackrel{k_1}{\underset{k_2}{\longleftarrow}} N_2O_4$			
289. In the reversible reak.	acuon		
c) Second order rea		d) Zero orde	I TEACHOII
a) First order reacti		b) Third order	
	$\rightarrow C_6 H_{12} O_6 + C_6 H_{12} O_6$		on vocation
		and fructose according to	tne equation
a) 8.0×10^{-8} s	b) 2.0×10^{-8}	,	
		ke for H ⁺ to disappear fro	
•	•		of H ⁺ . If the rate of disappearance of H ⁺
d) All of the above	() 00 -		cut to 1
	activation needed for	burning	
b) Kinetic stability o			
a) High threshold en			
of:			
	oon is exothermic, bu	t coal stored in coal depo	ots does not burn automatically because
a) Rate = $k[A][B]$			$A][B]^2$ d) Rate = $k[A]^2[B]^2$
reaction can be writ		-0	
		ns of both the reactants ((A and B) are doubled, rate law for the
			ration of B is doubled, and rate increases
d) All are correct			
c) Overall order is ((1+n)	1	
b) n th order in B			
a) First order in A		M	
	on between A and B is	given by, rate = $K[A][B]^T$	n , then the reaction is:
d) All of the above		_	
c) Some of the react	tants are coloured		
b) Some of the react	tants are solid at roon	n temperature	
a) The threshold en	ergy level differs fron	n one reaction to another	
283. The rate of chemica	ıl reaction depends on	the nature of chemical re	eactions, because:
d) Order of reaction	n is sum of power to th	ne concentration terms of	reactants to express the rate of reaction
•	• •	ric coefficient of the react	ants
=	ermined only experin		
	n is always a whole nu		
, ,	•	r the order of a reaction is	-
a) Nearly 400 min	b) Nearly 45 n	-	
	-	ergo 90% decomposition	
•		•	mple of the compound decompose 50%
c) Bimolecular and		•	ar and zero order
a) Bimolecular and		b) Unimolecu	ılar and first order
280. The reaction, $2N_2O_5$	2n	il.	и
a) <i>ak</i>	b) $\frac{a}{2k}$	c) $\frac{a}{k}$	$\mathrm{d})\frac{2k}{a}$
2/9. The time required for	_	of a zero order reaction is	
a) 64 times	b) 128 times	c) 256 times	-
		the reaction will become:	
			rate is doubled. If the temperature is
			apius Education

c)
$$2k_2[NO_2]^2 - k_2[N_2O_4]$$

d)
$$(2k_1 - k_2)[NO_2]$$

290. For the reaction, $N_2 + 3H_2 \rightleftharpoons 2NH_3$ the rate of change of concentration for hydrogen is -0.3×10^{-4} Ms⁻¹. The rate of change of concentration of ammonia is

a)
$$-0.2 \times 10^{-4}$$

b)
$$0.2 \times 10^{-4}$$

c)
$$0.1 \times 10^{-4}$$

d)
$$0.3 \times 10^{-4}$$

291. In the reaction; $A + 2B \rightarrow 3C + D$ which of the following expressions does not describe changes in the concentration of various species as a function of time?

a)
$$\frac{d[C]}{dt} = \frac{-3d[A]}{dt}$$

b)
$$\frac{3d[D]}{dt} = \frac{d[C]}{dt}$$

a)
$$\frac{d[C]}{dt} = \frac{-3d[A]}{dt}$$
 b)
$$\frac{3d[D]}{dt} = \frac{d[C]}{dt}$$
 c)
$$\frac{3d[B]}{dt} = \frac{-2d[C]}{dt}$$
 d)
$$\frac{2d[B]}{dt} = \frac{d[A]}{dt}$$

d)
$$\frac{2d[B]}{dt} = \frac{d[A]}{dt}$$

- 292. The order of reaction, with respect to one of the reacting component Y, is zero. In implies that
 - a) The reaction is going on at a constant rate.
 - b) The rate of reaction does not very with temperature.
 - c) The reaction rate is independent of the concentration of Y.
 - d) The rate of formation of the activated complex is zero.
- 293. The rate of disappearance of SO_2 in the reaction; $2SO_2 + O_2 \rightarrow 2SO_3$ is 1.28×10^{-3} g/sec. Then the rate of formation of SO₃ is:

a)
$$0.64 \times 10^{-3}$$
 g/sec

b)
$$0.80 \times 10^{-3}$$
 g/sec c) 1.28×10^{-1} g/sec

c)
$$1.28 \times 10^{-1}$$
 g/sec

d)
$$1.60 \times 10^{-3}$$
 g/sec

294. For the first order reaction half-life is 14 s, the time required for the initial concentration to reduce to 1/8 of its value is

a)
$$(14)^3 s$$

d)
$$(14)^2 s$$

295. Given that K is the rate constant for some order of any reaction at temp. T then the value of $\lim_{T\to\infty} \log K =$ (where *A* is the Arrhenius constsnt):

$$d \log A$$

296. The rate constant of a first order reaction is 3×10^{-6} per second and initial concentration is 0.10 M. Then the initial rate of reaction is

a)
$$3 \times 10^{-6} ms^{-1}$$

b)
$$3 \times 10^{-8} ms^{-1}$$
 c) $3 \times 10^{-7} ms^{-1}$

c)
$$3 \times 10^{-7} ms^{-1}$$

d)
$$3 \times 10^{-9} ms^{-1}$$

297. With respect to the figure given below which of the following statements is correct?

- a) E_a for the forward reaction is C B
- b) E_a for the forward reaction is B A
- c) $E_{a_{\text{(forward)}}} < E_{a_{\text{(backward)}}}$
- d) E_a (for reverse reaction) = C A
- 298. For a first order reaction, $A \to \text{products}$, the rate of reaction at [A] = 0.2 M is $1.0 \times 10^{-2} \text{ mol L}^{-1} \text{min}^{-1}$. The half-life period for the reaction is
 - a) 476 s
- b) 496 s
- c) 832 s
- d) 242 s
- 299. From the following data, the activation energy for the reaction (cal/mol):

$$H_2 + I_2 \rightarrow 2HI$$

$$T, K$$
 $1T, K^{-1}$ $\log_{10} K$

769
$$1.3 \times 10^{-3}$$
 2.9

 1.5×10^{-3}

a)
$$4 \times 10^4$$

667

b)
$$2 \times 10^4$$

1.1

c)
$$8 \times 10^4$$

d)
$$3 \times 10^4$$

- 300. An elementary reaction is given as $2P + Q \rightarrow \text{products}$. If concentration of Q is kept constant and concentration of *P* is doubled then rate of reaction is:
 - a) Doubled
- b) Halved
- c) Quadrupled
- d) Remains same
- 301. The hydrolysis of ethyl acetate was carried out separately with 0.05 M HCl and 0.05 M H₂SO₄. The rate constants were found to be k_1 and k_2 respectively then

a)
$$k_1 < k_2$$

b)
$$k_1 > k_2$$

c)
$$k_1 = k_2$$

d)
$$k_2 = 2k_1$$

- 302. Which one of the following statement for order of reaction is not correct? a) Order can be determined experimentally b) Order of reaction is equal to sum of the power of concentration terms in differential rate law c) It is not affected with stoichiometric coefficients of the reactants d) Order cannot be fractional 303. For a single step, reaction, $A + 2B \rightarrow Products$, the molecularity is d) 3 304. Which of the following statement is correct for a reaction $X + 2Y \rightarrow Products$? a) The rate of disappearance of X = twice the rate of disappearance of Yb) The rate of disappearance of X = 1/2 rate of appearance of products c) The rate of appearance of products = 1/2 the rate of disappearance of Y d) The rate of appearance of products = 1/2 the rate of disappearance of X 305. For the reaction $A \rightarrow B$, the rate law is; rate = K[A]. Which of the following statements is incorrect? a) The reaction follows first order kinetics b) The $t_{1/2}$ of reaction depends upon initial concentration of reactant c) *K* is constant for the reaction at a constant temperature d) The rate law provides a simple way of predicting the concentration of reactants and products at any times after the start of the reaction 306. For a first order reaction $k = 100 \, \mathrm{s}^{-1}$. The time for completion of 50% reaction is a) 1 milli-second b) 4 milli-second c) 7 mili-second d) 10 milli-second 307. Pieces of wood burn faster than a log of wood of the same mass because a) Surface area of log of wood is larger and needs more time to burn b) Pieces of wood have large surface area c) All pieces of wood catch fire at the same time d) Block of wood has higher density than pieces of the same wood 308. Which statement is not correct? a) For endothermic reactions, heat of reaction is lesser than energy of activation b) For exothermic reactions, heat of reaction is more than energy of activation c) For exothermic reactions energy of activation is less in forward reaction than in backward reaction d) For endothermic reactions energy of activation is more in forward reaction than in backward reaction 309. Which statement is true? a) Endothermic reactions have higher activation energies than exothermic reactions b) The specific rate constant for a reaction is independent of the concentration of the reacting species
 - c) There is a single rate determining step in any reaction mechanism
 - d) None of the above
- 310. If k_1 = rate contant at temperature T_1 and k_2 =rate constant at temperature T_2 for a first order reaction, then which of the following relations is correct?

 $(E_a : activation energy)$

a)
$$\log \frac{k_1}{k_2} = \frac{2.303 E_a}{R} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$$

b) $\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$
c) $\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left(\frac{T_1 T_2}{T_2 + T_1}\right)$
d) $\log \frac{k_1}{k_2} = \frac{E_a}{2.303 R} \left(\frac{T_1 T_2}{T_2 - T_1}\right)$

- 311. What is the half-life of Na-24 if 2×10^{-4} g sample of it disintegrate at the rate of 7.0×10^{12} atoms per s?
 - a) 4.97×10^5 s
- b) $4.97 \times 10^4 \text{ s}$
- c) 4.97×10^6 s
- d) 4.97×10^2 s
- 312. The concentration of a reactant X decreases from 01 M to 0.005 m in 40 min. If the reaction follows first order kinetics, the rate of the reaction when the concentration of X is 0.01 M will be
 - a) $1.73 \times 10^{-4} Mmin^{-1}$

b) $3.47 \times 10^{-4} Mmin^{-1}$

c) $3.47 \times 10^{-5} M \ min^{-1}$

- d) $7.5 \times 10^{-4} M \ min^{-1}$
- 313. For zero order reaction the integrated rate equation is

_	_	_		_	
C		E~		~+i~	4
(7 <i>[]</i>	11115	ru.	u c	atio	п
u	ıus	Lu	u	uu	

			Gplus Education
a) $kt = \frac{[A]}{[A]_0}$	b) $kt = [A] - [A]_0$	c) $[A] = -kt + [A]_0$	d) $[A] = kt - [A]_0$
314. The rate equation fo	r the reaction $2A + B \rightarrow C$ is:	found to be	
Rate=k[A][B]			
	nt in relation to this reaction	that the	
a) Unit of k must be	s ⁻¹		
b) $t_{1/2}$ is constant			
-	of C is twice the rate of disap		
-	pendent of the initial concent		
	tant of second order reaction		12 -21
a) $time^{-1}$		c) conc time $^{-1}$	-
		is 6 s ⁻¹ . How much time	e will it take to reduce the
	reactant to $\frac{1}{16}$ th value?		
•	b) $4.6 \times 10^4 \text{ s}$	•	d) 4.6×10^{-4} s
	emical reaction can be kept o	constant by:	
a) Stirring the comp			
b) Keeping the temp	erature constant		
c) Both (a) and (b)			
d) None of the above		10°C rice in temperature. If	the temperature is increased
by 60°C the rate of re	-	To Crise in temperature. If	the temperature is increased
a) 20 times	b) 32 times	c) 64 times	d) 128 times
,	ncentration of the reactant, th		-
proportional to		F	
a) a^{n-1}	b) <i>a</i> ⁿ	c) a^{1-n}	d) a^{n+1}
320. Rate of reaction dep	ends upon		
	b) catalyst	c) concentration	d) All of these
		to increase about 1.8 times	when the temperature was
•	he increase in rate is due to:		
•	er of active molecules		
	tion energy of reactants		
•	ation energy of reactants	oo atin a moolo aylo a	
•	mber of collisions between region $A_2 + B_2 \rightarrow 2AB$ follows the	•	17
$A_2 \rightleftharpoons A + A (fast)$	$001 A_2 + D_2 \rightarrow 2AD 10110WS U$	ie mechanism as given belov	ν,
$A + B_2 \longrightarrow AB + B $ (s	slow)		
$A + B \rightarrow AB$ (fast)			
The order of the ove	rall reaction is		
a) 2	b) 1	c) $1\frac{1}{2}$	d) 0
		$\frac{c_{j}}{2}$	
	proceeds following formula		
$k = PZe^{-E_a/RT}$.11.		
	ng process will increase the r		
a) Lowering of E_a		b) Lowering of <i>P</i>	a aborro factore
c) Lowering of Z	equation $k = Ae^{-E_a/RT}$ in che	d) Independent of all the	
correct?	equation $\kappa - Ae^{-2\alpha/3-3}$ in the	micai Kinetics, Willell one of	the following statements is
a) <i>K</i> is equilibrium o	onstant	b) A is adsorption factor	•
c) E_a is energy of act		d) <i>R</i> is Rydberg constant	
	$O_2 + F_2 \rightarrow 2NO_2F$, following		
		F	·

$$\begin{aligned} & \textbf{Splus Education} \\ & \textbf{NO}_2 + \textbf{F}_2 \overset{\text{Sow}}{\longrightarrow} \textbf{NO}_2 \textbf{F} + \textbf{F} \\ & \textbf{NO}_2 + \textbf{F}_1 \overset{\text{Fast}}{\longrightarrow} \textbf{NO}_2 \textbf{F} \\ & \textbf{Thus, rate expression of the above reaction can be written as:} \\ & \textbf{a}_1 r = K(\textbf{NO}_2)^2 [\textbf{F}_2] & \textbf{b}_1 r = K[\textbf{NO}_2] [\textbf{F}_2] & \textbf{c}_1 r = K[\textbf{NO}_2] \\ & \textbf{326}. \text{ For the reaction:} \\ & [\textbf{Cu}(\textbf{NH}_3)_4]^2 + \textbf{H}_2 \textbf{O} = [\textbf{Cu}(\textbf{NH}_3)_3 \textbf{H}_2 \textbf{O}]^2 + \textbf{NH}_3, \text{ the net rate of reaction at any time is given by, net rate} \\ & = 2.0 \times 10^{-4} [\textbf{Lu}(\textbf{NH}_3)_4]^2 + \textbf{H}_2 \textbf{O} = 3.0 \times 10^3 [\textbf{Cu}(\textbf{NH}_3)_3 \textbf{H}_2 \textbf{O}]^2 \cdot \textbf{f}_1 \textbf{NH}_3] \\ & \textbf{Then correct statement is/are:} \\ & \textbf{a}_1 \textbf{Rate constant for forward reaction} = 2 \times 10^{-4} \\ & \textbf{b}_2 \textbf{Rate constant for forward reaction} = 3 \times 10^5 \\ & \textbf{c}_3 \textbf{Equilibrium constant for the reaction} = 3 \times 10^5 \\ & \textbf{c}_3 \textbf{Equilibrium constant for the scale of reaction and the scale of the scal$$

a) $0_3(g)$ b) O(g)c) $0_2(g)$ d) None of these

 $O(g) + O_3(g) \rightarrow 2O_2(g)$

- 337. For a certain reaction of order 'n' the time for half change $t_{1/2}$ is given by; $t_{1/2} = \frac{2-\sqrt{2}}{K} \times c_0^{1/2}$, where K is rate constant c_0 is initial concentration. The value of n is:
 - a) 1

b) 2

- d) 0.5
- 338. For a reaction between A and B, the initial rate of reaction is measured for various initial concentrations A and B. the data provided are

and Brine data provided are			
			Initial
	[A]	[B]	reaction rate
1	0.20 M	0.30 M	5×10^{-5}
2	0.20 M	0.10 M	5×10^{-5}
3	0.40 M	0.05 M	1×10^{-5}

The overall order of the reaction is

a) One

b) Two

- c) Two and half
- d) Three

- 339. Which order of reaction obeys the relation $t_{1/2} = 1/Ka$?
 - a) First

- b) Second
- c) Third
- d) Zero
- 340. How much faster would a reaction proceed at 25°C than at 0°C if the activation energy is 65 kJ?
 - a) 2 times
- b) 16 times
- c) 11 times
- d) 6 times
- 341. The activation energy of a reaction at a given temperature is found to be 2.303RT J mol⁻¹. The ratio of rate constant to the Arrhenius factor is
 - a) 0.01

b) 0.1

c) 0.02

- d) 0.001
- 342. Consider an endothermic reaction $X \to Y$ with the activation energies E_b and E_f for the backward and forward reactions respectively. In general
 - a) There is no definite relation between E_b and E_f b) $E_b = E_f$

c) $E_b > E_f$

- d) $E_b < E_f$
- 343. For the reaction $A \rightarrow nB$, at the point of intersection of two curves show, the [B] is can be given by:

- 344. The elementary step of the reaction, $2Na + Cl_2 = 2NaCl$ is found to follow III order kinetics, its molecularity is:

b) 2

d) 4

345. Following mechanism has been proposed for a reaction,

$$2A + B \longrightarrow D + E$$

$$A + B \longrightarrow C + D$$

$$A + C \longrightarrow E$$

...(fast)

The rate law expression for the reaction is:

- a) $r = K[A]^2[B]$
- b) r = K[A][B]
- c) $r = K[A]^2$
- d) r = K[A][C]
- 346. Two first order reaction have half-lives in the ratio 8 : 1. Calculate the ratio of time intervals $t_1 : t_2$. The time t_1 and t_2 are the time period for (1/4)th and (3/4)th completion
 - a) 1: 0.602
- b) 2:301
- c) 0.256 : 0.603
- d) 0.2 : 0.301

- 347. Order of a reaction can be
 - a) Fractional
- b) Zero

- c) Integer
- d) All of these

348. The half-life period for a zero order reaction is equal to

Gplus Education
d) $\frac{0.693}{k[A]_0}$
n of both the reaction is
d) Triple

(د	2k
aj	$\overline{[A]_0}$

b)
$$\frac{[A]_0}{2k}$$

c)
$$\frac{0.693}{k}$$

	$[A]_0$	2k	R	$\kappa_{[A]_0}$
349	In a reaction $A + B \rightarrow C$, t	he rate expression is $R = R$	$k[A][B]^2$. If the concentrati	on of both the reaction is
	doubled at constant volum	ne then the rate of the read	ction will be	
	a) Eight time	b) Double	c) Quadruple	d) Triple
350	. For a gaseous reaction, th	e units of rate of rate of re	action are	
	a) L atm s ⁻¹	b) atm s^{-1}	c) atm $mol^{-1} s^{-1}$	d) mol s ⁻¹
351	The rate constant is given	n by the equation $K = Ae$	$e^{-E_a/RT}$ which factor should	d register a decrease for the
	reaction to proceed more			
	a) <i>T</i>	b) <i>Z</i>	c) A	d) <i>E</i> _a
352	. The activation energy for	most of the reactions is ap	proximately 50 kJ mol ^{–1} . T	he value of temperature
	coefficient for such reaction	ons is		
	a) > 2	b) >3	c) <1	d) >4
353	. The half-life period for a f	irst order reaction is 693 s	s. The rate constant of this	reaction would be
	a) 0.1s^{-1}	b) $0.01 \mathrm{s}^{-1}$	· , · · · · · · ·	d) 0.0001 s ⁻¹
354	For the reaction $N_2(g) + 1$	$3H_2(g) \rightarrow 2NH_3(g)$ under	r certain condition of temp	erature and partial pressure
	of the reactants, the rate	of formation of NH ₃ is 1	0^{-3} kg hr ⁻¹ . The rate of co	onversion of H ₂ under same
	condition is:			
	a) $1.5 \times 10^{-3} \text{kg hr}^{-1}$	b) $1.76 \times 10^{-4} \text{kg hr}^{-1}$	c) $2 \times 10^{-3} \text{kg hr}^{-1}$	d) $3 \times 10^{-3} \text{kg hr}^{-1}$
355	. In a first order reaction A	\rightarrow B, if K is the rate cons	stant initial concentration o	of the reactant is $0.5 M$, then
	half-life is:			
	a) $\frac{\ln 2}{\kappa}$	b) $\frac{\ln 2}{K\sqrt{0.5}}$	$\log_{10} 2$	d) $\frac{0.693}{0.5 K}$
				Old II
356		71	oubling the concentration o	of A will increase the rate of
	formation of B by a factor			
	a) ¼	b) 4	c) ½	d) 2
357	. With increase in temperat		0.0000000000000000000000000000000000000	
	a) increases	JPLUS EDU	b) decreases	
	c) Remains same		d) May increase or decre	ase
358	. Which of the following sta			
	<u>-</u>		nains constant throughout.	
	in large excess.		first order reaction when o	
	-	——————————————————————————————————————	the units of the concentrat	ion term used.
	-	n the plot of log (a-x) vs tin	_	
359				te constant of disappearance
			d it take for H ⁺ in drop to d	= =
		b) 6×10^{-7} sec	•	d) $6 \times 10^{-10} \text{sec}$
360		=	s of B is kept constant, and	that of <i>A</i> is doubled. The
	rate of reaction will be the			
	a) Decrease 4 times	b) Decrease 2 times	•	d) Increase 2 times
361		pression is correct for seco	ond order reaction. (\mathcal{C}_0 refe	ers to initial concentration of
	reactant)?		a. 1	2-2
	•	'	c) $t_{1/2} \propto C_0^{-1}$	'
362	A first order reaction is 10	0% complete in 20 min. Th	ne time taken for 19% comr	oletion is

362. A first order reaction is 10% complete in 20 min. The time taken for 19% completion is a) 30 min b) 40 Min c) 50 min d) 38 min 363. A graph plotted between $\log k \ versus \ \frac{1}{T}$ for calculating activation energy is shown by

- 364. In the following reaction $A \to B + C$, rate constant is 0.001 Ms⁻¹. Half-life and completion time of the given reaction are
 - a) 500 s, 1000 s
- b) 500 s, 750 s
- c) 250 s, 500 s
- d) 300 s, 600 s
- 365. A reaction was found to order with respect to the concentration of carbon monoxide. If the concentration of carbon monoxide is doubled, with everything else kept the same, the rate of reaction will
 - a) Remain unchanged

b) Triple

c) Increases by factor of four

- d) Double
- 366. The following data were obtained the first order decomposition of $2 A(g) \rightarrow B(g) + C(S)$ at a constant volume and at a particular temperature

		Total
S		pressure in
N	Time	Pascal
1	At the end of 10 min	300
2	After completion	200

The rate constant in min^{-1} is

- a) 0.0693

c) 6.93

- d) 6.93×10^{-4}
- 367. According to Arrhenius equation, the rate constant (k) is related to temperature (T) as

a)
$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

c)
$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} + \frac{1}{T_2} \right]$$

- b) $\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left[\frac{1}{T_1} \frac{1}{T_2} \right]$
- d) $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} + \frac{1}{T_2} \right]$
- 368. Inversion of cane-sugar in dilute acid is a
 - a) Bimolecular reaction
 - c) Unimolecular reaction

- b) Pseudo-unimolecular reaction
- d) Trimolecular reaction

369. Consider the reaction

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

The equality relationship between $\frac{d[NH_3]}{dt}$ and $-\frac{d[H_2]}{dt}$ is:

a)
$$+\frac{d[NH_3]}{dt} = -\frac{3}{2}\frac{d[H_2]}{dt}$$

b)
$$\frac{d[\text{NH}_3]}{dt} = -\frac{d[\text{H}_2]}{dt}$$

c)
$$\frac{d[NH_3]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt}$$

c)
$$\frac{d[NH_3]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt}$$

d) $+\frac{d[NH_3]}{dt} = -\frac{2}{3} \frac{d[H_2]}{dt}$

- 370. For a reaction $aA \rightarrow bB$ when [A] = 2.2 mM, the rate was found to be 2.4 mMs^{-1} . On reducing concentration of [A] to half, the rate changes to 0.6 mMs⁻¹. The order of reaction with respect to A is:

b) 2.0

c) 2.5

d) 3.0

- 371. The units of the rate constant of a second order reaction are
 - a) $mol^{-1}L^{-1}s^{-1}$
- b) $mol^{-1}Ls^{-1}$
- c) $mol^{-1}Ls$
- d) $mol L^{-1}s^{-1}$
- 372. A follows first order reaction, A→ product Concentration of A, change from 0.1 M to 0.025 M in 40 min. find the rate of reaction of A when concentration of A is 0.01 M.
 - a) $3.47 \times 10^{-4} M \text{ min}^{-1}$
 - b) $3.47 \times 10^{-5} M \text{ min}^{-1}$
 - c) $1.73 \times 10^{-4} M \text{ min}^{-1}$

Calus Education

	n			Gpius Education
	d) $1.73 \times 10^{-5} M \text{ min}^{-1}$	4 B 16 1		1 1 1 1
373.		A_2B , if the concentration of	A is doubled and of B is hard	alved, then the rate of the
	reaction will			
	a) Increase by two times		b) Decrease by two times	
	c) Increase by four times		d) Remain the same	
374.	Energy of activation of an	exothermic reaction is		
	a) Negative	b) Positive	c) Zero	d) Can't be predict
375.	For a reaction, the rate co	nstant is $2.34s^{-1}$. The half-l	life period for the reaction	is
	a) 0.30 s	b) 0.60 s	c) 3.3 s	d) Data is insufficient
376.	The rate of a reaction get	doubles when the tempera	ature changes from 7°C to	17°C. By what factor will it
	change for the temperature	re change from 17°C to 27°C	C?	
	a) 1.81	b) 1.71	c) 1.91	d) 1.76
377.	Arrhenius equation is			
	a) $\Delta H = \Delta E + \Delta n_a RT$	b) $\Delta G = \Delta H - T \cdot \Delta S$	c) $k = Ae^{-E_a/RT}$	d) None of these
378.		ggests an over all order of 0		•
	a) Rate = $K[X][Y][Z]$	50		8
	b) Rate = $K[X]^{0.5}[Y]^{0.5}[Z]$	0.5		
	c) Rate = $K[X]^{1.5}[Y]^{-1}[Z]$	=		
	d) Rate = $K[X][Y]^0/[Z]^2$			
370		expressed by Arrhenius equ	ation as	
3/).	$k = Ae^{-E/RT}$	expressed by Arrhemus equ	ation as	
	In this equation, <i>E</i> represent			
		th all the colliding molecule		
		ch colliding molecules will n		
		reacting molecules at a tem	-	
200		les with energy greater than		
380.		uired for a molecule to take		
	a) Threshold energy	b) Nuclear energy	c) Potential energy	d) Kinetic energy
		•	-	w the rate of reaction will
	-	re is increased from 30°C to		
	a) 16	b) 32	c) 64	d) 128
382.	In a gaseous phase reaction			
			from 100 mm to 120 mm	is noticed in 5 minute. The
	rate of disappearance of A	l_2 in mm min ⁻¹ is:		
	a) 4	b) 8	c) 16	d) 2
383.	The unit of rate constant of	of second order reaction is		
	a) Mol/Ls	b) L / Mol s	c) L^2/mol^2	d) Per second
384.	The given reaction,			
	$2\text{FeCl}_3 + \text{SnCl}_2 \longrightarrow \text{SnCl}_4$	+ 2FeCl ₂ is an example of:		
	a) First order reaction			
	b) Third order reaction			
	c) Second order reaction			
	d) None of these			
385.	For the reaction $A + B \rightarrow$	C, it is found that doubling	the concentration of A incr	eases the rate by four
		ncentration of B doubles th		
	reaction?			
	a) 4	b) 3/2	c) 3	d) 1
386.	•	, ,	•	K_2 of another reaction. The
				same temperature (E_1 and

 E_2) can be represented as:

_					
Gni	115	Fd.	uc	atic	n

	a) $E_1 > E_2$	b) .	$E_1 < E_2$	c) $E_1 = E_2$	d) None of these
387	For the reaction	$, H_2 + I_2 \rightarrow 2I$	H, the differer	ntial rate law is	
	$a) - \frac{d[H_2]}{dt} = -\frac{d[H_2]}{dt}$			$b) - \frac{d[H_2]}{dt} = -2$	$d[I_2]$ 1 $d[HI]$
	$a_{j} - \frac{dt}{dt} = -$	$\frac{dt}{dt} = \frac{1}{2} \frac{dt}{dt}$	<u> </u>	dt = -2	$\frac{dt}{dt} = \frac{1}{2} \frac{dt}{dt}$
	c) $-\frac{d[H_2]}{dt} = -\frac{1}{2}$	$d[I_2] d[HI]$		d) $-\frac{d[H_2]}{dt} = -\frac{d}{dt}$	$d[I_2] \qquad d[HI]$
	$-\frac{dt}{dt} = -\frac{dt}{dt}$	$\frac{dt}{dt} = \frac{dt}{dt}$		$df = \frac{dt}{dt} = -$	$\frac{dt}{dt} = -\frac{dt}{dt}$
388	The time for ha	lf-life of a firs	t order reactio	on is 1 hr. What is the time	e taken for 87.5% completion of the
	reaction?				
	a) 1 hour	b)	2 hour	c) 3 hour	d) 4 hour
389	DDT on exposur	e to water de	composes. Ha	lf-life is 10 yr. How much t	ime it will take for its
	decomposition t	to 99%?			
	a) 50 yr	b)	70 yr	c) 500 yr	d) 700 yr
390		uation, $k = A\epsilon$	$e^{-E_a/RT}$; A may	be called the rate constan	t at
	a) Very low tem			b) Zero activation	
		-	reaction mixt	ure d) All of the abov	
391		-		t as a result of chemical cha	
	a) Chemilumine		0	b) Fluorescence	0
	c) Phosphoresco			d) Photosensitiza	ation
392	Chemical reaction		high E_{α} values	•	
<u>.</u>	a) Very fast		Very slow	c) Moderately fa	st d) Spontaneous
393	In the reaction 3				a, spontaneous
0,0					0.1543
	a) $-\frac{1}{a}\frac{d[A]}{a}$	b)	$-\frac{2 a[A]}{a[A]}$	c) $+\frac{2d[A]}{dt}$	d) $-\frac{3}{3}\frac{d[A]}{d[A]}$
204	3 ui		3 ui	ut	Δ αι
394		-		ound to be constant and ind	lependent of the initial
	concentration of				
	a) First order	,	Zero order		-
395					dm^{-3} of a substance become half in
	40 s and 20 s th	rough first ord	ler and zero o	rder kinetics respectively. I	Ratio $\left(\frac{K_1}{K_0}\right)$ of the rate constants for
	first order (k_1)				W-07
				c) $1.5 mol^{-1} dm^{-1}$	d) 2 $mol^{-1}dm^{-3}$
396	The order of a re				.,
					4) 2
	a) 1	b)	$-\frac{1}{2}$	c) $-\frac{3}{2}$	d) 2
397			4	L	e reaction $X \to Y$, the rate constant
077					ol, $Ea_2 = 1800$ cal/mol, then the
	temperature at $\frac{1}{2}$				oi, $Eu_2 = 1000$ car, moi, then the
					200
	a) $\frac{200}{3.506}$ K	b) -	300 2303 K	c) $\frac{400}{6.506}$ K	d) $\frac{200}{5.204}$ K
398	Which of these o		21000		5,204
0,0	a) Nature of the			b) Concentration	of the reactants
	c) Temperature		n	d) Molecularity of	
399	-			•	n of time and the following data is
0,77	obtained	on or it in the	reaction R 71	was measured as a function	in or time and the ronowing data is
		00 075 0	40 010		
	,		40 0.10		
	` /		.12 0.18		
	The order of the		Cinat	-) C 1	4) Tl.:4
400	a) Zero	-	First	c) Second	d) Third
400.					time (x) and time t is found to be a
	straight line pas	sing through	ne origin. Thu	is, reaction is of:	

a) First order	b) Zero order	c) Third order	d) Second order
401. Rate constant of a rea	action depends upon		
a) Speed of reaction		b) Concentration of th	e reactants
c) Pressure of the sur	rrounding	d) Temperature	
402. An endothermic reac	tion $A \to B$ has an activation	n energy as x kg mol ⁻¹ of A	. If energy change of the
reaction is y kJ, the a	ctivation energy of the reve	rse reactions is	
a) – <i>x</i>	b) $y - x$	c) $x + y$	d) $x - y$
	ng statement in respect of zo		
	action is independent of rea		
	action is independent of ter	-	
	of the reaction is independ	_	
	of reaction is independent	of reactant cogeneration.	
Choose the correct a) I only		c) III and IV only	d) I and IV only
		the rate constant <i>K</i> become	-
a) $e^{K/X}$	b) K/X	c) K	d) <i>X/K</i>
•	• •	f elementary reaction, $A + B$	
a) $\frac{d}{dt} = K[A]$	b) $\frac{d}{dt} = K[B]$	$c) \frac{-d[A]}{dt} = K[A][B]$	d) $\frac{1}{dt} = K[A]$
406. The threshold energy	of a chemical reaction dep	ends upon:	
a) Nature of reacting	species		
b) Temperature			
c) Concentration of s			
	ns per unit time or collisior		
	has a half-life period of 69	9.3 sec. At 0.10 mol litre ⁻¹ r	eactant concentration, rate will
be: a) 10 ^{–4} <i>M</i> sec ^{–1}	1) 40-3 14 -1) 40-1 M -1	D 6 02 10=1 M ==1
			d) $6.93 \times 10^{-1} M \text{ sec}^{-1}$
408. The rate constant for $2N_1O_1 \rightarrow 4NO_1 + O_2$	is 2.0×10^{-5} s ⁻¹ . If the re-	to is 2.40×10^{-5} mol 1^{-1} .	s ⁻¹ , then the concentration of
N_2O_5 is mol L ⁻¹ is	13 3.0 × 10 3 -, 11 the 12	110 15 2,40 × 10 11101 L .	, then the concentration of
a) 0.4	b) 0.8	c) 1.2	d) 3.2
-	,	tal catalysed reaction becau	
a) Greater	b) Lower	c) Same	d) None of these
-	,		re given below. The plot that
follows Arrhenius eq		., .,	
		l	
A	A	A \	A
a)	b) 1	c) 1	d) ,
$k \mid $	b) k /	^c , k	u) k
T	T	T →	T— →
411. For the following hor	nogeneous reaction, the un	it of rate constant is $A + B -$	$\xrightarrow{k} C$
a) $\text{mol}^{-1}\text{Ls}^{-1}$	b) s^{-1}	c) S	d) s^{-1} mol L^{-1}
412. If $'a'$ is the initial con	centration of a substance v	which reacts according to z	ero order kinetics and \emph{K} is rate
constant, the time for	the reaction to go to comp	letion is:	
a) <i>a/K</i>	b) 2/ <i>Ka</i>	c) <i>K/a</i>	d) $2K/a$
		having = $5.48 \times 10^{-14} s^{-1}$	
a) $2.01 \times 10^{11} s$	b) $2.01 \times 10^{13} s$	c) $8.08 \times 10^{13} s$	d) $16.04 \times 10^{11} s$
414. The velocity constant	of a reaction at 290 K was	found to be $3.2 \times 10^{-3} \text{s}^{-1}$.	When the temperature is

raised to 310 K, it will be about

_	,	- 1			
Gpl	us	Łа	uco	atio	n

a) 6.4×10^{-3}	b) 3.2×10^{-4}	c) 9.6×10^{-3}	Gplus Education d) 1.28×10^{-2}
415. For fourth order reaction			
a) $\left(\frac{mol}{L}\right)^{-3} s^{-1}$	b) $\left(\frac{mol}{L}\right)^{+3} s^{-1}$	c) $\left(\frac{mol}{L}\right)^{-3} s$	d) $\left(\frac{mol}{L}\right)^{-3}$
416. The branch of chemistry			
a) Thermochemistry	b) Photochemistry	c) Analytical chemistry	-
417. For the reaction; $2N_2$ $10^{-5} \sec^{-1} M$ respective	$0_5 \rightarrow 4N0_2 + 0_2$, rate a ly, then concentration of N		$02 \times 10^{-4} M \text{ sec}^{-1} \text{ and } 3.4 \times$
a) 1.732 <i>M</i>	b) 3 <i>M</i>		d) $3.5 \times 10^5 M$
418. In the following first ord	er competing reactions:		
$A + Reagent \rightarrow Product$			
$B + \text{Reagent} \rightarrow \text{Product}$			
	if only 50% of B will have	been reacted when 94% of	A has been reacted in same
time is:			
a) 4.06	b) 0.246	c) 2.06	d) 0.06
419. For which order half-life			1) ml.:1
a) Zero	b) First	c) Second	d) Third
420. For a given reaction, pr reaction will be increase		the energy of activation to	by 2 Kcar at 27 C. The rate of
a) 20 times	b) 14 times	c) 28 times	d) 2 times
		c) 20 times	d) 2 diffes
421. For a reversible reaction A	$A \stackrel{K_1}{\rightleftharpoons} B$,		
	1-2	ic given by	
ist of def in both the diff	ections, the rate of reaction	is given by.	
a) <i>K</i> ₁ [<i>A</i>]	4		
b) $-K_2[B]$	1		
c) $K_1[A] + K_2[B]$	C ENTIL	0.077.051	
d) $K_1[A] - K_2[B]$	CIPPLUS EDU	CAHON	
422. A first order reaction is 2	20% complete in 10 min. C	alculate the time for 75% c	ompletion of the reaction
a) 0.233 min	b) 62.18 min	c) 112.12 min	d) 36.18 min
423. Order of radioactive disi	ntegration reaction is		
a) Zero	b) First	c) Second	d) Third
424. Ethylene is produced by	cyclobutane as:		
$C_4H_8 \xrightarrow{\Delta} 2C_2H_4$			
	$8 \times 10^{-4} \mathrm{sec}^{-1}$. In what tim	ne will the molar ratio of th	e ethylene to cyclobutane in
reaction mixture attain t	the value 1?		
a) 27.25 minute	b) 28.25 minute	c) 25 minute	d) 20 minute
425. For a reaction for which	the activation energies of f	orward and reverse reaction	ns are equal?
a) $\Delta H = 0$	b) $\Delta S = 0$	c) The order is zero	d) There is no catalyst
426. The half-life period of a			ired for the completion of
	ction will be $(\log 2=0.302)$		D 440 4
a) 230.3 min	b) 23.03 min	c) 46.06 min	d) 460.6 min
427. The rate of the elemen	ntary reaction, $2NO + O_2$	$ ightarrow$ 2NO $_2$, when the volum	ne of the reaction vessel is

doubled:

428. For the reaction system

a) Will grow eight times of its initial rate $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left($ b) Reduce to one-eight of its initial rate c) Will grow four times of its initial rate d) Reduce to one-fourth of its initial rate

				Gpius Eaucation
	$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$	(g) if the volume of the read	ction vessel is reduced to o	ne-third of its original
	volume, what will be the	order of the reaction?		
	a) Diminished to one four	th of its initial value	b) Diminished to one twee	nty seven of its initial value
	c) Increase to twenty seve	en times of its initial value	d) Increase to four times of	of its initial value
429	The rate constant of	a second order reaction	is $10^{-2} M \text{s}^{-1}$. The ra	te constant expressed in
	cc. molecule ⁻¹ min ⁻¹ is:			
	a) 9.96×10^{-22}	b) 9.96×10^{-23}	c) 9.96×10^{-21}	d) 1.004×10^{-24}
430	Radioactive decay is a		•	
	a) First order reaction		b) Zero order reaction	
	c) Second order reaction		d) Third order reaction	
431	For the decomposition of	N ₂ O ₅ at a particular tempe	rature, according to the eq	uations
	$2N_2O_5 \rightarrow 4NO_2 + O_2$		-	
	$N_2O_5 \to 2NO_2 + \frac{1}{2}O_2$			
	2	re E_1 and E_2 respectively th	en	
	a) $E_1 > E_2$	b) $E_1 < E_2$	c) $E_1 = 2E_2$	d) $E_1 = E_2$
432		ction is equal to $k[A][B]$. The		
	_	ourth of the initial volume.		_
	- 4	b) $\frac{16}{1}$		_
	a) $\frac{1}{16}$	b) 	c) $\frac{1}{8}$	d) $\frac{8}{1}$
433	. The rate law of the reactio	on,		
	$A + 2B \rightarrow \text{Product.}$			
	Product is given by $\frac{d[P]}{dt}$ =	$K[A]^2 \cdot [B]$. If A is taken in	large excess, the order of t	he reaction will be:
	a) Zero	b) 1	c) 2	d) 3
434	A first order reaction has	a rate constant 1.15×10^{-3}	$3s^{-1}$. How long will 5g of the	nis reactant take to reduce
	to 3 g?	7		
	a) 444 s	b) 402 s		d) None of these
435			. 245	and c are concentrations of
		t respectively. The rate of r		12.0
	a) 3	b) 0	c) 1	d) 2
436		led when temperature incre		==
	•	b) 54		d) 53
437		actants is increased by $'x'$ th	ien rate constant <i>k</i> become	es
	a) $\ln \frac{k}{x}$	b) $\frac{k}{x}$	c) $k + x$	d) <i>k</i>